ANNA UNIVERSITY: : CHENNAI 600 025 UNIVERSITY DEPARTMENTS M.E. MECHATRONICS (FT) REGULATIONS – 2023 CHOICE BASED CREDIT SYSTEM

VISION

To develop educational avenues for the students to emerge as disciplined researchers, technocrats and entrepreneurs making transformative impact on establishing a world class society in the domain of Production Engineering and Automation.

MISSION

- 1. To impart students with knowledge on modern manufacturing and automated systems by incorporating critical thinking, leadership qualities, communication with interpersonal skills.
- 2. To create a conducive environment for exchange of multidisciplinary ideas towards research, creativity, innovation and entrepreneurship to meet the societal needs with optimal solutions.
- 3. To follow the values of integrity and honesty through curricular, co-curricular and extracurricular activities.

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

ANNA UNIVERSITY: : CHENNAI 600 025 UNIVERSITY DEPARTMENTS M.E. MECHATRONICS (FT) REGULATIONS – 2023 CHOICE BASED CREDIT SYSTEM

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- I. Secure gainful employment in industry, academia and research avenues by showcasing their competence and adaptability.
- II. Outshine in scientific, managerial, and entrepreneurial roles, applying a versatile and multidisciplinary approach with capacity to address complex challenges.
- III. Graduates will possess the skills and knowledge to excel as technocrats, specializing in the design, development, and analysis of mechatronic systems to provide sustainable solutions for industrial and societal issues.
- IV. Graduates will embody ethical responsibility, committing to lifelong learning and exhibit effective communication as individual professional and collaborative team member.

PROGRAMME OUTCOMES (POs):

РО	Programme Outcome
1	An ability to independently carry out research/investigation and development work to solve practical problems.
2	An ability to write and present a substantial technical report/document.
3	Students should be able to demonstrate a degree of mastery in the area of mechatronics.
4	Graduates will have a solid understanding of key concepts, methodologies, core components, and contemporary tools and techniques essential for unified mechatronics systems with intelligence.
5	Students will develop, analyze and optimize the solution for diverse engineering challenges using a mechatronics-based approach.
6	Graduates will be capable of constructing real-time or virtual mechatronic systems with considerations for industrial standards, environmental impact, ethical principles, and socio-economic factors.

PEO & PO Mapping

PEO	PO								
FLO	1	2	3	4	5	6			
Ι.	2	2	1	1	1	1			
II.	2	2	2	2	2	2			
III.	3	2	3	3	3	2			
IV.	2	2	1	1	1	2			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

		COURSE NAME	PO1	PO2	PO3	PO4	PO5	PO6
		Concepts in Electronics Engineering	1.4	1.4	1	1	1.4	1
		Concepts of Mechanisms and Design	1.6	1.4	1.6	1.2	1.8	2
	_	Sensors and Data Acquisition System	1.4	1.2	1.2	1.4	1	1
	rer	Control System Design	1.8	1.8	1.6	1.8	2.2	1
	SEMESTER	Drives and Actuators	1.4	1.6	2	1.4	1.2	2
	SEN	Research Methodology and IPR	3	3	2	-	-	-
		Professional Elective – I	-	-	-	-	-	-
-		Control Systems Design Laboratory	2	2.5	1.6	1.6	2.5	1.6
YEAR		Computer Aided Modelling- Mini Project	1.3	3	-	1	1.6	3
×		Mechatronics System Design	1	1	2	3	2	3
		Industrial Robotics	1	1	2	2	1.4	1.4
	=	Industrial Automation	1.6	1	1.6	2	1.4	1.4
	TER	Embedded Systems	1.2	1	1	1.5	1	1.2
	SEMESTER	Professional Elective – II	-	-	-	-	-	-
		Professional Elective – III	-	-	-	-	-	-
		Robot Simulation, Programming and Inspection Laboratory	1	3	3	3	2	2
		Mechatronics System Design – Mini Project	1	3	1.3	3	2.3	3
	II	Professional Elective – IV	-	-	-	-	-	-
	ESTER	Professional Elective - V	-	-	-	-	-	-
		Project Work - I	3	3	3	3	3	3
YEAR II	SEM	Internship	2.3	3	2.6	2.6	2	3
ΥΕ/	SEMESTER IV	Project Work - II		3	3	3	3	3

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

ANNA UNIVERSITY: CHENNAI 600 025

UNIVERSITY DEPARTMENTS

M.E. MECHATRONICS (FT)

REGULATIONS – 2023

CHOICE BASED CREDIT SYSTEM

CURRICULUM AND SYLLABI FOR SEMESTER I TO IV

SI.	COURSE			PE	RIO	DS	TOTAL				
No	COURSE	COURSE TITLE	CATEGORY	PE	R WE	EK	CONTACT	CREDITS			
				L	Т	Ρ	PERIODS				
THE	THEORY										
1.	MR3151	Concepts in Electronics Engineering*	FC	2	0	2	4	2			
1.	MR3101	Concepts of Mechanisms and Design*	FC		Z	4	3				
2.	MR3152	Sensors and Data Acquisition System	PCC	3	0	4	7	5			
3.	MR3102	Control System Design	PCC	3	0	0	3	3			
4.	MR3103	Drives and Actuators	PCC	3	0	4	7	5			
5.	RM3151	Research Methodology and IPR	RMC	2	1	0	3	3			
6.		Professional Elective – I	PEC	3	0	0	3	3			
PRA	CTICAL										
7.	MR3111	Control Systems Design Laboratory	PCC	0	0	3	3	1.5			
8.	MR3112	Computer Aided Modelling- Mini Project [#]	EEC	0	0	3	3	1.5			
			TOTAL	16	1	16	33	25			

SEMESTER - I

Note: 1. * - is bridge course for circuit and non-circuit stream of students. Students with multi-disciplinary background (i.e, Mechatronics, Robotics and Automation may opt anyone of this based on the undergraduate curriculum exposure).

2. # - Mini project internal evaluation

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

SEMESTER-II

SL. NO		COURSE TITLE	CATEGORY		IOD: WEE	S PER K	TOTAL CONTACT PERIODS	CREDITS
NO	CODE			L	Т	Р	PERIODS	
THEC	ORY	-				-		_
1.	MR3201	Mechatronics System Design	PCC	3	0	0	3	3
2.	MR3251	Industrial Robotics	PCC	3	0	0	3	3
3.	MR3202	Industrial Automation	PCC	3	0	4	7	5
4.	MR3203	Embedded Systems	PCC	3	0	4	7	5
5.		Professional Elective – II	PEC	3	0	0	3	3
6.		Professional Elective – III	PEC	3	0	0	3	3
PRA	CTICAL	·						
7.	MR3211	Robot Simulation, Programming and Inspection Laboratory	PCC	0	0	3	3	1.5
8.	MR3212	Mechatronics System Design – Mini Project [#]	EEC	0	0	3	3	1.5
			TOTAL	18	0	14	32	25

Note: 1# - Mini project internal evaluation

SEMESTER-III

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY		RIODS WEE			CREDITS
NO				L	Т	Р	PERIODS	
THEOF	RY							
1.		Professional Elective –IV	PEC	3	0	0	3	3
2.		Professional Elective-V	PEC	3	0	0	3	3
PRACT	ΓICAL		13	1		5		
3.	MR3311	Project Work- I	EEC	0	0	12	12	6
4.	MR3312	Internship	EEC	0	0	2	2	1
	•		TOTAL	6	0	14	20	13
		PROGRESS THR	OLIGHKNO	W	FDG			

SEMESTER-IV

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS	
				L	Т	Ρ	FERIODS	
PRA	CTICAL							
1	MR3411	Project Work– II	EEC	0	0	24	24	12
			TOTAL	0	0	24	24	12

TOTAL CREDITS -25+25+13+12= 75 CREDITS

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

FOUNDATION COURSES (FC)

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PER CONTAC		TOTAL CONTACT PERIODS	CREDITS	
				L	Т	Ρ		
1.	MR3151	Concepts in Electronics Engineering	FC	2	0	2	4	3
	MR3101	Concepts of Mechanisms and Design	FC	2	0	2		

RESEARCH METHODOLOGY COURSE (RMC)

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIODS PER WEEK		PER WEEK		K	TOTAL CONTACT PERIODS	CREDITS
				<u> L </u>	Т	Ρ				
1.	RM3151	Research Methodology and IPR	RMC	2	1	0	3	3		

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
				1	Т	Ρ		
1.	MR3112	Computer Aided Modelling- Mini Project	EEC	0	0	3	3	1.5
2.	MR3212	Mechatronics System Design – Mini Project	EEC	0	0	3	3	1.5
3.	MR3311	Project Work– I	EEC	0	0	12	12	6
4.	MR3312	Internship	EEC	0	0	2	2	1
5.	MR3411	Project Work– II	EEC	0	0	24	24	12

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

PROGRAM CORE COURSES (PCC)

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY		rio R We	DS EEK	TOTAL CONTACT	CREDIT S	
	OODE			L	Т	Ρ	PERIODS	0	
1.	MR3152	Sensors and Data Acquisition System	PCC	3	0	4	7	5	
2.	MR3102	Control System Design	PCC	3	0	0	3	3	
3.	MR3103	Drives and Actuators	PCC	3	0	4	7	5	
4.	MR3111	Control Systems Design Laboratory	PCC	0	0	3	3	1.5	
5.	MR3201	Mechatronics System Design	PCC	3	0	0	3	3	
6.	MR3251	Industrial Robotics	PCC	3	0	0	3	3	
7.	MR3202	Industrial Automation	PCC	3	0	4	7	5	
8.	MR3203	Embedded Systems	PCC	3	0	4	7	5	
9.	MR3211	Robot Simulation, Programming and Inspection Laboratory	PCC	0	0	3	3	1.5	
		X.:	TOTAL	21	0	22	43	32	

MINI PROJECTS

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIODS PER WEEK			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Ρ	I LINODO	
1.	MR3112	Computer Aided Modelling- Mini Project	PCC	0	0	3	3	1.5
2.	MR3212	Mechatronics System Design – Mini Project	PCC	0	0	3	3	1.5
		N.	TOTAL	0	0	6	6	3

PROFESSIONAL ELECTIVE COURSES (PEC)

(ALL COURSES COMMON TO PROFESSIONAL ELECTIVE I- V)

ROBOT	ICS
--------------	------------

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY		rio R Wi	DS EEK	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Ρ		
1.	MR3051	Multi-Body Dynamics and Control	PEC	3	0	0	3	3
2.	MR3002	Mobile Robotics	PEC	3	0	0	3	3
3	MR3003	Robot Operating Systems	PEC	3	0	0	3	3
4.	MR3004	Humanoid Robotics	PEC	3	0	0	3	3
5.	MR3005	Multi Agent Robotics	PEC	3	0	0	3	3

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MOBILITY SYSTEMS

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIO PER WEE			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Ρ		
1.	MR3006	Automobile Engineering	PEC	3	0	0	3	3
2.	AM3351	Electric and Hybrid Vehicles	PEC	3	0	0	3	3
3	MR3007	Vetronics	PEC	3	0	0	3	3
4.	MR3008	Smart Mobility and Intelligent Vehicles	PEC	3	0	0	3	3
5.	MR3009	Advanced Driver Assistance Systems	PEC	3	0	0	3	3

INTELLIGENCE SYSTEMS

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	WEEK			TOTAL CONTACT PERIODS	CREDITS
			5	4	T	Ρ		
1.	MR3010	Programming in Python	PEC	3	0	0	3	3
2.	MR3011	Machine Vision and Computer Vision	PEC	3	0	0	3	3
3	MR3012	Machine Learning and Deep Learning	PEC	3	0	0	3	3
4.	MR3013	Haptics and Mixed Reality	PEC	3	0	0	3	3
5.	MR3014	Applied Signal Processing	PEC	3	0	0	3	3

PROGRESS THEORED SYSTEMS

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIODS PER WEEK		ER CONTACT		CREDITS
				L	Т	Ρ		
1.	MR3001	Single Board Computers and Programming	PEC	3	0	0	3	3
2.	MR3015	Communication Protocols	PEC	3	0	0	3	3
3	MR3016	FPGA for Embedded Systems	PEC	3	0	0	3	3
4.	MR3017	GPU Computing	PEC	3	0	0	3	3

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

INDUSTRIAL AUTOMATION

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIOI PER WEEP			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Ρ		
1.	MR3018	Industrial Internet of Things	PEC	3	0	0	3	3
2.	MR3019	Human Machine Interface	PEC	3	3 0		3	3
3	MR3020	Advanced Control Systems	PEC	3	0	0	3	3
4.	MR3021	Motion Control Technology	PEC	3	0	0	3	3
5.	MR3052	Digital Twin and Industry 5.0	PEC	3	0	0	3	3

MECHATRONICS SYSTEMS

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
			6		\mathcal{T}_{i}	Ρ		
1.	MR3022	Mechatronics in Manufacturing Systems	PEC	3	0	0	3	3
2.	MR3023	Medical Mechatronic Systems	PEC	3	0	0	3	3
3	MR3024	Bio-mechatronics	PEC	3	0	0	3	3
4.	MR3053	Drone Technologies	PEC	3	0	0	3	3
5.	MR3025	Marine Robotics	PEC	3	0	0	3	3

MANUFACTURING TECHNOLOGY

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY		RIO PER VEE	2	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Ρ		
1.	MR3026	Micro and Nano systems	PEC	3	0	0	3	3
2.	MR3027	Modelling and Finite Element Analysis of Electromechanical Systems	PEC	3	0	0	3	3
3	MN3051	Concepts In Product Development	PEC	3	0	0	3	3
4.	MR3028	CNC Technology	PEC	3 0		0	3	3
5.	MR3029	Computer Aided Inspection	PEC	3	0	0	3	Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	ATEGORY			TOTAL CONTACT PERIODS	CREDITS
				L	Т	Ρ		
1.	MR3030	Design of Experiments	PEC	3	0	0	3	3
2.	IL3152	Operations Management	PEC	3	0	0	3	3
3	MR3031	Terotechnology	PEC	3	0	0	3	3
4.	QE3251	Lean Six Sigma	PEC	3	0	0	3	3
5.	IL3251	Supply Chain Systems and Management	PEC	3	0	0	3	3

INDUSTRIAL MANAGEMENT

SI.	M.E MECHATRONICS (FULL TIME)									
51. NO.	SUBJECT AREA	CRE	DITS PE	R SEME	STER	CREDITS				
NO.	SUBJECT AREA		II.		IV	TOTAL				
1.	FC	03	00	00	00	03				
2.	PCC	14.5	17.5	00	00	32				
3.	PEC	03	06	06	00	15				
4.	MC	03	00	00	00	03				
5.	EEC	1.5	1.5	07	12	22				
	TOTAL CREDITS	25	25	13	12	75				

PROGRESS THROUGH KNOWLEDGE

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR31	51 CONCEPTS IN ELECTRONICS ENGINEERING		Т	Р	С
MINUT		2	0	г 2	3
COUR	SE OBJECTIVES:		•	. – .	
1.	To recall the functionality of fundamental electronic components.				
2.	To understand the functions of operational amplifier and its applica	tions.			
3.	To review and use the logic gates for various digital circuit develop	ment.			
4.	To understand the functions and uses in measurement.				
5.	To learn the power management on various electronic units.				
UNIT I	ELECTRONIC COMPONENTS AND DEVICES				6
Zener Applica	ors, Capacitors, Inductors, Transformers – Types and Properties - Pl Diodes, Transistors, Thyristors – Types - Operating Mechanism -C ations. LED Construction and Working – Applications, Types o uction – Applications.	Chara	cteris	stics	and
UNIT I	OPERATIONAL AMPLIFIERS AND APPLICATIONS				6
Arithm Amplifi	ional Amplifiers – Principles, Specifications, Characteristics a etic Operations, Integrator, Differentiator, Comparator, Schmitt Trigg er, Active Filters, Linear Rectifiers, Waveform Generators, Sample onverters, Feedback and Power Amplifiers, Sine Wave Oscillators.	er, Ins	strum	enta	tion
UNIT I	II DIGITAL ELECTRONICS				6
Study of	of Combinational Logic Circuits - Full Adder, Code Converters, Multi of Sequential Logic Circuits - Flip-Flops, Counters, Shift Registers – State Memory – A/D Converters.	Mem	nory -	Тур	es -
-	ated Power Supply - Rectifiers and Filters – Switching Power S	upplie	es -	Ther	-
Consid	lerations. Measurement of Voltage, Current, Frequency and Power L scopes, Recorders, Data Loggers, Signal Sources, Counters, Analyz	Jsing	Multi	Met	ers,
	POWER MANAGEMENT				6
Elemer	 Estimation – Power Estimation and Optimization of Electricants, Integrated System - Sensors, Data Acquisition System - Drives, ors and Controllers - Batteries - Types, Specification - Power Convertion 	Switcl rsion I	hing I Meth	Devid ods.	ces,
1.	DF EXPERIMENTS: Study of Digital Storage oscilloscope.	<u>AL</u> :	30 PI	ERIC	DS
	Experimentation with CRO.				
	Design of DC power supplies				
	Design of Inverting Amplifier and Non-Inverting Amplifiers				
	Design of Instrumentation amplifier.				
	Design of analog filters.				
	Design of combinational circuits and sequential circuits.				
	Design of A/D converters and D/A converters. RC Servo motor driver circuit.				
	Design of stepper motor driver circuit				
10.	(Any 7 Experiments)				

30 PERIODS

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

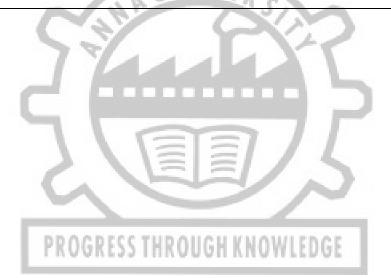
CO1	State the fundamentals of electronic, circuits and measurement instruments.								
CO2	Recognize the components, circuits and measurement instruments operation.								
CO3	Design and develop the circuits using electronics components and measure using								
	instruments.								
CO4	Analyse the circuit by measuring parameters using measurement instruments.								
CO5	Create circuit to perform the signal conditioning, power management and logic								
	operations								

REFERENCES:

- 1. Millman and Halkias, "Electronic Devices and Circuits", McGraw Higher Ed., 2015.
- 2. Jacob Millman, "Microelectronics Digital and Analog Circuits and Systems", McGraw-Hill, 2014.
- 3. HelfrickA.D and Cooper.W. D. "Modern Electronic Instrumentation and Measurements Techniques", Prentice Hall, 2016.
- 4. Roy Choudhury, "Linear Integrated Circuits", New Age, 2018
- 5. Malvino & Leach, "Digital Principles and Application", Tata McGraw-Hill Education, 2002.

COs			POs			
COS	1	2	3	4	5	6
1	1	NUMI	1	1	1	1
2	21.3		1	210	1	1
3	1	2	1	1	2	1
4	2	1	1	1	2	1
5	2	2	1	1	1	1
Avg	1.4	1.4	1	1	1.4	1

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025


	1 CONCEPTS OF MECHANISMS AND DESIGN	L	Т	Ρ	С
COURS	E OBJECTIVES:	2	0	2	3
1.	To understand the functionality of basic mechanisms and to de	termir	ne the	nosi	tion
••	velocity, and acceleration profiles of these mechanisms.	CIIII		, 6031	uon,
2.	To recognize the effect of friction in joints and to know the various	types	s of m	echai	nical
	power transmission using belt drives and cams.	, iypoi	5 01 111	contai	noui
3.	To understand the behaviors of the vibration in various machines				
4.	To design machine components.	-			
5.	To design transmission elements.				
UNIT I	MECHANISMS				6
Definitio	n – Machine And Structure – Kinematic Link, Pair and Chair	n – C	lassif	icatio	n of
	ic Pairs – Constraint & Motion - Degrees of Freedom – Inversion of				
with the	ir Practical Applications. Introduction to Kinematic Analysis and	Synth	nesis	of Sir	nple
Mechar	isms – Determination of Velocity and Acceleration of Simple Mec	hanis	ms.		-
UNIT II	FRICTION AND CAMS				6
	f Friction – Friction in Screw and Nut – Screw Jack- Belt (Flat /				
	logy-Different Types of Cams and Followers – Cam Design for				ower
	Curves, Graphical Construction of Cam Profiles for Different Type	s of F	ollow	er	-
					6
	erminology Related to Vibrations, Free and Forced Vibration				
	g-Force Transmitted to Supports - Vibration Isolation - Vibration				
Speed Shafts.	of Shafts- Torsional Vibration of Shafts – Single and Multi-Roto	r Sysi	tems	– Ge	ared
UNIT IV	DESIGN OF MACHINE COMPONENTS	_			6
_	of Closed Coiled Helical Spring - Design of Couplings – Design of	f Shaf	+		0
	DESIGN OF TRANSMISSION ELEMENTS	Shai	ι		6
-	of Gears - Selection and Specification - Design of Journal Bear	inas -	- Sele	oction	-
	ation of Anti-Friction Bearings – Roller Bearings – Ball Screw - Cl			,00011	ana
opeenie		TAL		PERIC	DS
LIST O	EXPERIMENTS:				
1.	aw of Polygon of Forces Apparatus				
2.	Parallel Force System Apparatus =				
3.	Rolling Friction Apparatus				
4.	Square Threaded Screw Jack				
5.	Bell Crank Lever	í.			
6.	Equilibrium Forces Apparatus				
	Equilibrium Forces Apparatus Sliding Friction Apparatus				
7.		ank, [Doubl	e Roc	ker,
7. 8.	Sliding Friction Apparatus	ank, [Doubl	e Roc	ker,
7. 8.	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra				-
7. 8. 8. 9.	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms.	of nat	ural F		-
7. 8. 9.	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination	of nat	ural F		-
7. 8. 9.	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin	of nat	ural F		ency
7. 8. 9.	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination and verification of Laws of springs – Damping coefficient determin Any 7 Experiments)	of nat	ural F	reque	ency
7. 8. 9. COURS	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES:	of nat	ural F	reque	ency
7. 8. 9. COURS Upon co	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to:	of nat	ural F	reque	ency
7. 8. 9. COURS Upon co CO1	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop	of nat nation ment	ural F 30 I	Freque PERIO	oncy
7. 8. 9. COURS Upon co	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determine Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop Describe the working and usage of mechanism and mechanic	of nat nation ment	ural F 30 I	Freque PERIO	oncy
7. 8. 9. COURS Upon co CO1 CO2	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop Describe the working and usage of mechanism and mechanic development	of nation	ural F 30 I	PERIC a sys	oncy
7. 8. 9. COURS Upon co CO1 CO2 CO3	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Dscillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop Describe the working and usage of mechanism and mechanical development Design and develop the various mechanisms and mechanical pa	of nat nation ment al par	ural F 30 I	PERIC a sys	oncy DDS
7. 8. 9. Upon co CO1 CO2	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Docillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop Describe the working and usage of mechanism and mechanic development Design and develop the various mechanisms and mechanical pa Analyze by determining the mechanical parameters to	of nat nation ment al par	ural F 30 I	PERIC a sys	oncy DDS
7. 8. 9. Upon co CO1 CO2 CO3 CO4	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Docillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop Describe the working and usage of mechanism and mechanic development Design and develop the various mechanisms and mechanical pa Analyze by determining the mechanical parameters to the mechanisms	ment al par rts for chanic	ural F 30 I ts in a system al co	PERIC a sys	oncy DDS stem ents
7. 8. 9. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sliding Friction Apparatus Kinematics of Four Bar, Slider Crank, Crank Rocker, Double cra Docillating cylinder Mechanisms. Single degree of freedom Spring Mass System – Determination of and verification of Laws of springs – Damping coefficient determin Any 7 Experiments) E OUTCOMES: Impletion of this course, the students will be able to: Reproduce the fundamental of mechanism in machinery develop Describe the working and usage of mechanism and mechanic development Design and develop the various mechanisms and mechanical pa Analyze by determining the mechanical parameters to	ment al par rts for chanic	ural F 30 I ts in a system al co	PERIC a sys	oncy DDS stem ents

the P. DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

REFERENCES

- 1. Bansal R.K, "Theory of Machines", Laxmi Publications (P) ltd., New Delhi. 2016.
- 2. Malhotra.D.R. and Gupta.H.C. "The Theory of Machines" Satya Prakasam, Tech. India Publications, 2000.
- 3. R.S.Khurmi and Gupta, "Theory of Machines" Eurasia Publishing House Pvt Ltd. 2020.
- 4. Joseph Edward Shigley, Charles R. Mischke, "Mechanical Engineering Design", Mcgraw Hill International Edition, 2011.
- 5. V B Bhandari, "Design of Machine Elements" 5th edition, McGraw Hill, 2020.
- 6. T.V. Sundarajamoorthy and N. Shanmugam, "Machine Design", Anuradha Publication, 2018.
- 7. Design Data: Data Book of Engineers by PSG College-Kalaikathir Achchagam -Coimbatore, 2020

CO 2	POs								
COs	1	2	3	4	5	6			
1	2	1	1	1	2	2			
2	1	1	2	1	2	2			
3	1	2	2	2	1	2			
4	2	1	1	1	2	2			
5	2	2	2	1	2	2			
Avg	1.6	1.4	1.6	1.2	1.8	2			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3152	SENSORS AND DATA ACQUISITION SYSTEM	L	<u> </u>	P	C
		3	0	4	5
	E OBJECTIVES: learn the various types of sensors, transducers, sensor	outou	t cia	nal tu	(DOC
	pration techniques, formulation of system equation and its cha	•	•	•	pes,
	understand basic working principle, construction, Application a				cs of
	lacement, speed and ranging sensors.		laiac	iensii	05 01
	understand and analyze the working principle, construction	ion a	nnlic	ation	and
	racteristics of force, magnetic and heading sensors.		ippiio	allon	ana
	learn and analyze the working principle, constructio	n ai	oplica	ation	and
	racteristics of optical, pressure, temperature and other senso		ppnoc		unu
	familiarize students with different signal conditioning circu		sian	and	data
	uisition system.		- 3		
	SENSOR CLASSIFICATION, CHARACTERISTICS AND S	IGNA	L TYI	PES	9
	f Measurement – Classification of Errors – Error Analysis –				amic
Characte	ristics of Transducers – Performance Measures of Sensor	·s – C	Classi	ficatio	on of
	- Sensor Calibration Techniques - Sensor Outputs - Signal	Туре	s - A	nalog	and
	gnals, PWM and PPM.				
JNIT II	DISPLACEMENT, PROXIMITY AND RANGING SENSORS	;			9
	FORCE, MAGNETIC AND HEADING SENSORS				
	ment Sensors – Brush Encoders - Potentiometers, Resolver,				
	, Inductive, Capacitive, LVDT – RVDT – Synchro – Micros				
	ensors - Ultrasonic Ranging - Reflective Beacons - Laser Ra	ange S	senso	or (LIL	JAR)
	RF Beacons	-			
	FORCE, MAGNETIC AND HEADING SENSORS				9
	Devis Turses Mendulas Advisitations linsitations and	ا مع ما			
	Sage – Types, Working, Advantage, Limitation, and				Load
Measure	ment – Force and Torque Measurement - Magnetic Sensor	s – Ty	/pes,	Princ	ciple,
Measure Advantag	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall	s – Ty Effect	/pes,	Princ	ciple,
Measure Advantaç Sensor -	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers	s – Ty Effect	/pes, , Edo	Princ	ciple, rrent
Measure Advantaç <u>Sensor -</u> UNIT IV	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE	s – Ty Effect ENSO	/pes, , Edo RS	Princ dy Cu	rrent
Measure Advanta <u>c</u> <u>Sensor -</u> UNIT IV Photo Co	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit	s – Ty Effect ENSO	/pes, , Edo <u>RS</u> ptic S	Princ dy Cu Sensc	rrent rrent 9 ors –
Measure Advantag <u>Sensor -</u> UNIT IV Photo Co Pressure	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ad	s – Ty Effect ENSO Der Oper Oper	/pes, , Edo RS ptic S c, Tei	Princ dy Cu Sensc mpera	rrent rrent 9 ors – ature
Measure Advanta <u>(</u> Sensor - UNIT IV Photo Co Pressure - IC, The	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi	s – Ty Effect ENSO Der Oper Oper	/pes, , Edo RS ptic S c, Tei	Princ dy Cu Sensc mpera	rrent rrent 9 ors – ature
Measure Advanta <u>(</u> Sensor - UNIT IV Photo Co Pressure - IC, The	ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors.	s – Ty Effect ENSO Der Oper Oper	/pes, , Edo RS ptic S c, Tei	Princ dy Cu Sensc mpera	rrent rrent 9 ors – ature
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM	s – Ty Effect ENSO Der Op coustio	/pes, , Edo R <u>8</u> ptic S c, Tei ensor	Princ dy Cu Sensc mpera 's - M	ciple, rrent 9 ors – ature EMS 9
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig	s – Ty Effect ENSO Der Op coustic ical Se Dacitive	/pes, , Edc RS ptic { c, Ter ensor e Br ata A	Princ dy Cu Sensc mpera 's - M idges	siple, rrent 9 ors – ature EMS 9 s for sition
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA	s – Ty Effect ENSO Der Op coustic ical Se Dacitive	/pes, , Edc RS ptic { c, Ter ensor e Br ata A	Princ dy Cu Sensc mpera 's - M idges	siple, rrent 9 ors – ature EMS 9 s for sition
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig	s – Ty Effect ENSO Der Op coustic ical Se Dacitive	/pes, , Edc ptic S c, Tel ensor e Br ata A AQ (Princ dy Cu Sensc mpera rs - M ridges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules-	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software.	s – Ty Effect ENSO Der Op coustic ical Se Dacitive	/pes, , Edc ptic S c, Tel ensor e Br ata A AQ (Princ dy Cu Sensc mpera 's - M idges	rrent 9 ors – ature EMS 9 5 for sition and
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules-	ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS:	s – Ty Effect ENSO Der Ol coustic ical Se Dacitive ital D	/pes, , Edc ptic S c, Tel ensor e Br ata A AQ (Princ dy Cu Sensc mpera rs - M ridges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- LIST OF 1. Experi	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Torq	s – Ty Effect ENSO Der Ol coustic ical Se Dacitive ital D	/pes, , Edc ptic S c, Tel ensor e Br ata A AQ (Princ dy Cu Sensc mpera rs - M ridges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- LIST OF 1. Experi 2. Detern	ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ad ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toro nine the characteristics of Pressure Sensor.	s – Ty Effect ENSO Der Op coustic ical Se Dacitive ital D AQ- D	/pes, , Edc Ptic S c, Tel ensor e Br ata A AQ (45	Princ dy Cu Sensc mpera s - M idges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems- Modules- Modules- LIST OF 1. Experi 2. Detern 3. Displa	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac ermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Torq	s – Ty Effect ENSO Der Op coustic ical Se Dacitive ital D AQ- D	/pes, , Edc Ptic S c, Tel ensor e Br ata A AQ (45	Princ dy Cu Sensc mpera s - M idges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- LIST OF 1. Experi 2. Detern 3. Displa Sensor.	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ace emistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toro nine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magne	s – Ty Effect ENSO Der Op coustic ical Se Dacitive ital D AQ- D	/pes, , Edc Ptic S c, Tel ensor e Br ata A AQ (45	Princ dy Cu Sensc mpera s - M idges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- LIST OF 1. Experi 2. Detern 3. Displa Sensor. 4. Detern	 ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SECONDUCTIVE Cell, Photo Voltaic, Photo Resistive, LDR – Fite – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Active remistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Capment - DC and AC Signal Conditioning – Analog and Dig ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toronine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magnetic Measurement using Inductive type-LVDT and Magnetic Measurement Sensors. 	s – Ty Effect ENSO Der Op coustic ical Se pacitive ital D Q- D que etic ty	/pes, , Edd ptic S c, Tel e Br ata A AQ (45 pe - I	Princ dy Cu Sensc mpera s - M idges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- I. Experi 2. Detern 3. Displa Sensor. 4. Detern 5. Detern	 ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fite a Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Acermistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Capment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toronine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magnetian the Characteristics of Various Temperature Sensors.	s – Ty Effect ENSO Der Op coustic ical Se pacitive ital D Q- D que etic ty	/pes, , Edd ptic S c, Tel e Br ata A AQ (45 pe - I	Princ dy Cu Sensc mpera s - M idges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules UST OF 1. Experi 2. Detern 3. Displa Sensor. 4. Detern 5. Detern 6. Distan	 ment – Force and Torque Measurement - Magnetic Sensors of the compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SECONDUCTIVE Cell, Photo Voltaic, Photo Resistive, LDR – Fite – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Active Sensors, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Capment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toronine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magnetian and the Characteristics of Various Temperature Sensors. 	s – Ty Effect ENSO Der Op coustic ical Se pacitive ital D Q- D que etic ty	/pes, , Edd ptic S c, Tel e Br ata A AQ (45 pe - I	Princ dy Cu Sensc mpera s - M idges Acquis Cards	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules USSTOF 1. Experi 2. Detern 3. Displa Sensor. 4. Detern 5. Detern 6. Distan 7. Detern	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac emistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toron nine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magne nine the Characteristics of Various Temperature Sensors. nine the Characteristics of Various Light Detectors (Optical S ce Measurement using Ultrasonic and Laser Sensor. nine angular velocity using gyroscope.	s – Ty Effect Enso Der Op coustic ical Se Dacitive ital D AQ- D que etic ty ensor	ypes, , Edc ptic S c, Tel e Br ata A AQ (45 pe - I s).	Princ dy Cu Sensc mpera 's - M idges Acquis Cards PERI Hall E	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- Systems Modules- LIST OF 1. Experi 2. Detern 3. Displa Sensor. 4. Detern 5. Detern 6. Distan 7. Detern 8. Experi	ment – Force and Torque Measurement - Magnetic Sensor ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ac emistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toron nine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magne nine the Characteristics of Various Temperature Sensors. nine the Characteristics of Various Light Detectors (Optical S ce Measurement using Ultrasonic and Laser Sensor. nine angular velocity using gyroscope. ment on accelerometer to determine amplitude and frequenc	s – Ty Effect Enso Der Op coustic ical Se Dacitive ital D AQ- D que etic ty ensor	ypes, , Edc ptic S c, Tel e Br ata A AQ (45 pe - I s).	Princ dy Cu Sensc mpera 's - M idges Acquis Cards PERI Hall E	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- I. Experi 2. Detern 3. Displa Sensor. 4. Detern 5. Detern 6. Distan 7. Detern 8. Experi 9. Speed	 ment – Force and Torque Measurement - Magnetic Sensors e, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fite – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Acemistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Capment - DC and AC Signal Conditioning – Analog and Dig ADC-DAC-Data Sampling-Parameters Measured using DA DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toronine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magnetine the Characteristics of Various Temperature Sensors. nine the Characteristics of Various Light Detectors (Optical S ce Measurement using Ultrasonic and Laser Sensor. ment on accelerometer to determine amplitude and frequence and Position Measurement Using Encoders. 	s – Ty Effect Enso Der Op coustic ical Se Dacitive ital D AQ- D que etic ty ensor	ypes, , Edc ptic S c, Tel e Br ata A AQ (45 pe - I s).	Princ dy Cu Sensc mpera 's - M idges Acquis Cards PERI Hall E	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- Modules- I. Experi 2. Detern 3. Displa Sensor. 4. Detern 5. Detern 6. Distan 7. Detern 8. Experi 9. Speed 10. Expe	 ment – Force and Torque Measurement - Magnetic Sensors e, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fite – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Acemistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Capment - DC and AC Signal Conditioning – Analog and Dig ADC-DAC-Data Sampling-Parameters Measured using DA DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toronine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magnetine the Characteristics of Various Temperature Sensors. nine the Characteristics of Various Light Detectors (Optical S ce Measurement using Ultrasonic and Laser Sensor. ine angular velocity using gyroscope. ment on accelerometer to determine amplitude and frequence and Position Measurement Using Encoders. 	s – Ty Effect Enso Der Op coustic ical Se Dacitive ital D AQ- D que etic ty ensor	ypes, , Edc ptic S c, Tel e Br ata A AQ (45 pe - I s).	Princ dy Cu Sensc mpera 's - M idges Acquis Cards PERI Hall E	rrent 9 ors – ature EMS 9 5 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- Modules- Sensor. 4. Detern 5. Detern 6. Distan 7. Detern 8. Experi 9. Speed 10. Expe 11. Expe	ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fik – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ad emistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toron nine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magne nine the Characteristics of Various Temperature Sensors. nine the Characteristics of Various Light Detectors (Optical S ce Measurement using Ultrasonic and Laser Sensor. nine angular velocity using gyroscope. ment on accelerometer to determine amplitude and frequenc and Position Measurement Using Encoders. riment on acquisition of analog signal using DAQ. riment on acquisition of digital signal using DAQ.	s – Ty Effect ENSO Der Op coustic ical Se Dacitive ital D Q- D que etic ty ensor	ypes, , Edd RS ptic S c, Tel ensor e Br ata A AQ (45 pe - I s).	Princ dy Cu Sensc mpera s - M idges Cards PERI Hall E	iple, rrent 9 ors – ature EMS 9 for sition and ODS
Measure Advantag Sensor - UNIT IV Photo Co Pressure - IC, The Sensors UNIT V Need fo Measure Systems Modules- Modules- Modules- Sensor. 4. Detern 5. Detern 6. Distan 7. Detern 8. Experi 9. Speed 10. Expe 11. Expe	ment – Force and Torque Measurement - Magnetic Sensors ge, Limitation, and Applications - Magneto Resistive – Hall Heading Sensors – Compass, Gyroscope and Inclinometers OPTICAL, PRESSURE, TEMPERATURE AND OTHER SE onductive Cell, Photo Voltaic, Photo Resistive, LDR – Fit – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Ad emistor, RTD, Thermocouple – Non-Contact Sensor - Chemi - Smart Sensors. DATA ACQUISITION SYSTEM or Signal Conditioning – Resistive, Inductive and Cap ment - DC and AC Signal Conditioning – Analog and Dig -ADC-DAC-Data Sampling-Parameters Measured using DA - DAQ Software. EXPERIMENTS: ments Using Strain Gauge Sensor: Load Measurement, Toron nine the characteristics of Pressure Sensor. cement Measurement using Inductive type-LVDT and Magne nine the Characteristics of Various Temperature Sensors. nine the Characteristics of Various Light Detectors (Optical S ce Measurement using Ultrasonic and Laser Sensor. nine angular velocity using gyroscope. ment on accelerometer to determine amplitude and frequence and Position Measurement Using Encoders. riment on acquisition of analog signal using DAQ. or and realize circuit to convert change in resistance, inducta	s – Ty Effect ENSO Der Op coustic ical Se Dacitive ital D Q- D que etic ty ensor	ypes, , Edd RS ptic S c, Tel ensor e Br ata A AQ (45 pe - I s).	Princ dy Cu Sensc mpera s - M idges Cards PERI Hall E	iple, rrent 9 ors – ature EMS 9 for sition and ODS

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

				-							
			TOTAL	105 PERIODS							
COUR	SE OUTCOMES:										
Upon d	completion of this course, the stu	dents will be able t	0:								
CO1	State the principles of variou	us sensor, senso	r characteristics	s, signal types,							
	calibration methods.	calibration methods.									
CO2	Determine the transfer function	and empirical rel	ation of sensors	through sensor							
	response study			-							
CO3	Describe the operation of sense	ors, circuits and dat	a acquisition sys	stem							
CO4	Analyze and select the suitable	sensor for the give	n applications.								
CO5	Select and design suitable sign	al conditioning circ	uit for data acqu	isition.							
			·								
REFE	RENCES										
1.	Ernest O. Doeblin, "Measureme	ent system, Applica	ation and Desigr	n", Tata McGraw							
	Hill Publishing Company Ltd., 2		-								
2.	Jacob Fraden, "Handbook of M	odern Sensors, Ph	iysics, Design ai	nd Applications",							
	Springer, 2016.										
3.	John P. Bentley., "Principle of M	easurement syster	ns", Pearson Pre	entice Hall, 2008.							
4.	Patranabis D., "Sensor and Act	uators", Prentice H	all of India (Pvt)	Ltd., 2005.							
5.	Renganathan S., "Transducer E	Engineering", Allied	Publishers (P) I	_td., 2003							
	A 100		1								
		POs									
	COs 1	2 3 4	5 6								
	2 1	1 1 2		1							
				4							

<u> </u>			PO	s			
COs	1	2	3	4	5	6	
1		1	-	1	2	1	
2	1.5	1	1	2	1	1	
3	1	1	1	1	1	1	
4	2	2	2	1	2	1	
5	2	1	2	2	1	1	
Avg	1.4	1.2	1.2	1.4	1	1	

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3102	CONTROL SYSTEM DESIGN	L	Τ	Ρ	С
001100		3	0	0	3
	E OBJECTIVES: represent and simplify the mathematical models for variou	10 th /		- nhv	
	ems.	is typ	Jes u	рпу	Sical
	ecognize the time domain specifications and to analyze of val	rious	tynes	ofeve	stom
	its characteristics in time domain.	1003	types	OF Sy.	stern
	know the frequency domain specifications and to analyze of va	rious	tynes	of sve	stem
	its characteristics in frequency domain methods.	nouo	ypoo	or oy:	Storn
	design compensator and controller using time and frequency	doma	in.		
	evaluate, analyze and design a control system of servomotors			cont	rol.
	SYSTEM REPRESENTATION AND MODELLING				9
	ion and Need for Control Systems with Examples – Open lo		nd Cl	bood	-
	– Transfer Function Model – System Representation - Mathe				
	cal, Electrical, Thermal, Fluid Transportation, and Fluid Powe				
	Reduction – Signal Flow Graph.		y 31011	10 - L	
Jagram					
					9
	k Systems – Block Diagram - Inputs Signals and its Mod	dels -	- Time		
	e of First & Second Order Systems – Time Domain Specifica				
	nd Error Constants – Routh Hurwitz Criterion – Root Locus – F				
	ol System Design. Impulse Responses of Various Types of Sys				
	,				, ,
UNIT III	FREQUENCY DOMAIN ANALYSIS	5			9
	ance Measures in Frequency Domain - Bode Plot - Polar Pl				-
	ance measures in Frequency Dunnain - Duue Fiul - Fuiai Fi	ot – ľ	Vvauis	st Sta	bility
Criterion	- Stability Analysis - Experimental Determination of Transfer				
Criterion					
Criterion	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. 				
Criterion System [Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. 	r Fun	ctions	– Co	ontro 9
Criterion System I UNIT IV Lead, La	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS 	r Fun	ctions	– Co	ntro 9 ction
Criterion System I UNIT IV Lead, La - Charac	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency 	r Fun Doma	ain. International	– Co troduc on Is:	ontro 9 ction
Criterion System I UNIT IV Lead, La - Charac of PID Co	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In 	Doma Doma DOF	ain. International	- Co troduc on Is: ontrol	ontro 9 ctior sues
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In ontroller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-W 	Doma Doma DOF	ain. International	- Co troduc on Is: ontrol	ontro 9 ction sues
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples	- Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller	Doma Doma DOF	ain. International	- Co troduc on Is: ontrol	ontro 9 ction sues
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V	- Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL	Doma Doma DOF I	ain. In hentati PID Co p Con	- Co troduc on Is: ontrol trol U	ontro 9 ction sues llers- Jsing 9
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis	- Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot	Doma Doma Doma DOF I Vindu	ain. Int nentati PID Co p Con	- Co troduction Iss on Iss ontrol trol U	ontro 9 ction sues llers- Jsing 9 sis -
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control –Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor 	Doma Doma DoF I Vindu	ain. Int nentati PID Co p Con	- Co troduc on Is: ontrol trol U analys	9 ction sues llers- Jsing 9 sis - otion
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-W ontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline 	Doma Doma DoF I Vindu	ain. Int nentati PID Co p Con	- Co troduc on Is: ontrol trol U analys	9 ction sues llers- Jsing 9 sis - otion
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In ontroller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. 	Doma Doma DOF I /indu	ain. Intentations PID Con p Con pollity A Analys	- Co troduction Is: ontrol trol U Analysisis-Mo (inve	9 ction sues llers- Jsing 9 sis - otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In ontroller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. 	Doma Doma DoF I Vindu	ain. Intentations PID Con p Con pollity A Analys	- Co troduc on Is: ontrol trol U analys	9 ction sues llers- Jsing 9 sis – otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control –Two I s Control Transfer Between Manual and PID Control - Anti-W ontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: 	Doma Doma DOF I /indu	ain. Intentations PID Con p Con pollity A Analys	- Co troduction Is: ontrol trol U Analysisis-Mo (inve	9 ction sues llers- Jsing 9 sis – otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon co	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In ontroller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-W ontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: 	Doma Doma DOF Vindu	ctions ain. In pentati PID Co p Con pility <i>A</i> Analys odels	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	9 ction sues llers- Jsing 9 sis - otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon con CO1 D	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: rescribe the terminologies, definitions and performance measure 	Doma Doma DOF Vindu	ctions ain. In pentati PID Co p Con pility <i>A</i> Analys odels	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	9 ction sues llers- Jsing 9 sis - otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon coi CO1 D sy	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In Controller – Tuning of Controllers - Practical PID Control – Two I is Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - Intation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measures. 	r Fun Doma nplem DOF I /indu - Stal and <i>J</i> ar M TAL	ain. Int nentati PID Co p Con pility <i>A</i> Analys odels dodels	- Co troduction Ise ontrol trol U Analysisis-Mo (inve PERIC	9 ction sues llers- Jsing 9 sis - otior ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon coi CO1 D sy	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: rescribe the terminologies, definitions and performance measure 	r Fun Doma nplem DOF I /indu - Stal and <i>J</i> ar M TAL	ain. Int nentati PID Co p Con pility <i>A</i> Analys odels dodels	- Co troduction Ise ontrol trol U Analysisis-Mo (inve PERIC	9 ction sues llers- Jsing 9 sis – otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon co CO1 D sy CO2 Ic	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In Controller – Tuning of Controllers - Practical PID Control – Two I is Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - Intation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measures. 	r Fun Doma nplem DOF I /indu - Stal and <i>J</i> ar M TAL	ain. Int nentati PID Co p Con pility <i>A</i> Analys odels dodels	- Co troduction Ise ontrol trol U Analysisis-Mo (inve PERIC	9 ction sues llers- Jsing 9 sis – otion ertec
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon col CO1 D sy CO2 Ic fr	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I is Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measurem. dentify the parameters of mathematical modelling of a system equency analysis. 	r Fun Doma nplem DOF I /indu - Stal and / ar M TAL	ain. International Analysio International In	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	9 ction sues llers- lsing sis - otion ertec ODS
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon con CO1 D sy CO2 Ic fr CO3 D	Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In ontroller – Tuning of Controllers - Practical PID Control – Two I s Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measures ystem. lentify the parameters of mathematical modelling of a system equency analysis. esign the signal flow graph, block diagram, transfer function,	r Fun Doma pplem DOF I /indu - Stal and <i>J</i> ar M TAL ures o n met	ain. International Analysio International In	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	9 ction sues llers- lsing sis - otion ertec ODS
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon con CO1 D si CO2 Ic fr CO3 D	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I is Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO EOUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measurem. Interval the parameters of mathematical modelling of a system equency analysis. 	r Fun Doma pplem DOF I /indu - Stal and <i>J</i> ar M TAL ures o n met	ain. International Analysio International In	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	9 ction sues llers- lsing sis - otion ertec ODS
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon col CO1 D si CO2 Ic fr CO3 D si CO4 E	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I is Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - Intation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO E OUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measurem. Identify the parameters of mathematical modelling of a system equency analysis. esign the signal flow graph, block diagram, transfer function, tability analysis methods, compensators and control methods valuate the system modelling as well as system stability. 	r Fun Doma nplem DOF I /indu - Stal and / ar M TAL ures o n met	ctions ain. Intentation PID Cop p Con polity <i>A</i> Analys lodels dodels 45 I of con hod in space	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	Ising 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Criterion System I UNIT IV Lead, La - Charac of PID Co Bumples a PID Co UNIT V Analysis Impleme Control pendulur COURSI Upon con CO1 D sy CO2 Ic fr CO3 D st CO4 E CO5 S	 Stability Analysis – Experimental Determination of Transfer Design using Frequency Domain Analysis. DESIGN OF COMPENSATORS AND CONTROLLERS g, Lag-Lead Compensation in Time Domain and Frequency teristics of Analog ON-OFF, P, PI, PD and PID Controllers – In controller – Tuning of Controllers - Practical PID Control – Two I is Control Transfer Between Manual and PID Control - Anti-Wontroller MOTION CONTROL of Servo Motor System Using Root Locus and Bode Plot - ntation of P, PI, PD and PID Controllers for Servo Motor System and its Design Challenges– Overview of Nonline n) – control. TO EOUTCOMES: mpletion of this course, the students will be able to: escribe the terminologies, definitions and performance measurem. Interval the parameters of mathematical modelling of a system equency analysis. 	r Fun Doma nplem DOF I /indu - Stal and / ar M TAL ures o n met	ctions ain. Intentation PID Cop p Con polity <i>A</i> Analys lodels dodels 45 I of con hod in space	- Co troduc on Is: ontrol trol U analys sis-Mo (inve PERIO	Ising 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

REFERENCES

- 1. Nise Norman S., "Control Systems Engineering", John Wiley & Sons Inc., 2020.
- 2. Asif Sabanovic and Kouhei Oshnishi, "Motion Control Systems" Willey, 2011.
- 3. William.S Levine, "Control System Fundamentals", CRC Press, 2019.
- 4. Farid Golnaraghi, Benjamin C. Kuo, "Automatic Control Systems", Willey, 2017.
- 5. Nagrath.I.J and Gopal, "Control System Engineering", New Age international (P) Ltd., 2010.
- 6. Ogata.K, "Modern Controls Engineering", Prentice Hall of India Pvt. Ltd., New Delhi, 2015.

<u> </u>	POs					
COs	1	2	3	4	5	6
1	2	2	1	1	1	1
2	1	2	2	2	1	1
3	2	2	1	2	3	1
4	2	1	2	2	3	1
5	2	2	2	2	3	1
Avg	1.8	1.8	1.6	1.8	2.2	1

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	3103	DRIVES AND ACTUATORS	L	T	Ρ	С
001			3	0	4	5
1		BJECTIVES:		h = = : = f	م مر ام ا	
1.	genera	ognize the standard symbols and to understand the function and actuation elements.				
2.	fluid p	lize the functions of fluid regulation and control elements a ower circuit and to acquire the practice on assembling atic circuits.				
3.	hydrau	niliar and exercise the design procedure of various type lic fluid power circuits and to provide a training to create lic circuits.				
4.	and to	lerstand the typical functions and selections of various type provide the hands-on training to the use of various of the tation of tation of the tation of tat				
5.		prehend the utilities of mechanical and power electroni nal requirements of actuators and control valves.	ic dr	ives fo	or var	ious
UNI	TI F	LUID POWER SYSTEM GENERATION AND ACTUATOR	RS			9
Corr Hyd Spe	npariso raulic f cificatio	Automation, Classification of Drives - Hydraulic, Pneun n – ISO Symbols for their Elements, Selection Criteria. G Pumps and Motor Gears, Vane, Piston Pumps – Moto n - Drive Characteristics – Utilizing Elements - Linear etails, Cushioning – Power Packs – Accumulators	ienei ors	rating - Sele	Eleme ction	ents - and
UNI	ти 🗆 о	ONTROL AND REGULATING ELEMENTS				9
Con of A	trol and	Regulating Elements — Direction, Flow and Pressure Con n, Types, Sizing of Ports. Spool Valves - Operating Cha ervo Valves - Types - Characteristics and Performance				
UNI	тш	IRCUIT DESIGN FOR HYDRAULIC AND PNEUMATICS	-			9
- Ca Use	scade l of Rela	ign Methods – Sequencing Circuits Design - Combinational Method – KV Mapping - Electrical Control of Pneumatic an ys, Timers, Counters, Programmable Logic Control of Hyd -C Ladder Programming	d Hy	draulic	: Circu	uits -
UNI	TIVE	LECTRICAL ACTUATORS				9
Sing Cha Prin	gle Phas racteris ciple, C	 Construction, Working Principle, Classification, Character and Three Phase AC Motors – Construction, Working Principles and Applications, Special Electrical Motors - Servomote lassification, Construction and Working - BLDC Motor and stric Actuators – Linear Electrical Actuators - Hybrid Actuat 	ncipl ors - its C	e, Clas Stepp	ssifica er Mo	tion, tors,
UNI	TVE	LECTRICAL DRIVE CIRCUITS				9
Driv Brid	es for N ge und es - A(Notion Control - DC Motors - Speed, Torque, Direction and er PWM Mode. Control of AC Motor Drives – VFD Drives C Servo Drives - Speed, Breaking, Direction, Position ar	– Er nd T	nergy S orque	Saving Contr	- H- J AC
Step	•	otor Drive Circuits for Speed and Position Control - Drive Drives – Protection and Switchgears.	55 10		C Mo	tor -

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

LIST OF EXPERIMENTS: FLUID POWER DRIVES

- 1. Experimental Verification of Speed Control Circuits in Pneumatic and Hydraulic Trainer.
- 2. Experimental Verification of Single and Double Acting Cylinder Circuits Using Different Directional Control Values.
- 3. Experimental Verification of Electro-Pneumatic Circuits.
- 4. Experimental Verification of Pneumatic Sequencing Circuits.
- 5. Experimental Verification of Logic, Meter-in and Meter-out Pneumatic Circuits.
- 6. Experimental Verification of Electro Pneumatic Sequencing Circuits.
- 7. Control of PLC Based Electro Pneumatic Sequencing Circuits.
- 8. Control of PLC Based Electro Hydraulic Sequencing Circuits

Any 5 experiments ELECTRICAL DRIVES

- 1. Control the Position, Speed and Direction of DC Servo Motors
- 2. Control the Position, Speed and Direction of AC Servo Motors
- 3. Control the Position, Speed and Direction Stepper Motor.

4. Control the Position, Speed and Direction Control of Linear mechanical drive with DC Servo/ stepper Motor.

60 PERIODS

TOTAL 105 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- **CO1** State the operation of pneumatic, hydraulic and electrical actuators and its circuit components.
- **CO2** Describe the working of pneumatic, hydraulic and electrical actuators and its circuit components in a circuit.
- **CO3** Design the circuit using pneumatic, hydraulic and electrical actuators to perform sequential operation.
- **CO4** Select appropriate pneumatic, hydraulic and electrical actuators, and corresponding drives to perform automation for a given application.
- **CO5** Develop and analyze the circuit of pneumatic, hydraulic and electrical actuators for a required application.

REFERENCES

- 1. Austin Hughes, "Electric Motors and Drives Fundamentals, Types and Applications", Fourth Edition, Elsevier, 2019
- 2. Singh.M.D, Khanchandani.K.B, "Power Electronics", Second Edition, McGraw-Hill, 2008.
- 3. Antony Esposito, "Fluid Power Systems and Control", Prentice-Hall, 2013.
- 4. Gopal K.Dubey, "Fundamentals of Electrical Drives", Narosa Publications, 2002.
- 5. Peter Rohner, "Fluid Power Logic Circuit Design", the Macmillan Press Ltd., London, 1979.

COs	POs							
COS	1	2	3	4	5	6		
1	1	1	2	1	1	2		
2	2	1	2	1	1	2		
3	1	2	2	2	2	2		
4	2	2	2	2	1	2		
5	1	2	2	1	1	2		
Avg	1.4	1.6	2	1.4	1.2	2		

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

9

9

9

9

9

OBJECTIVES:

RM3151

To impart knowledge on

- Formulation of research problems, design of experiment, collection of data, interpretation and presentation of result
- Intellectual property rights, patenting and licensing

UNIT I RESEARCH PROBLEM FORMULATION

Objectives of research, types of research, research process, approaches to research; conducting literature review- information sources, information retrieval, tools for identifying literature, Indexing and abstracting services, Citation indexes, summarizing the review, critical review, identifying research gap, conceptualizing and hypothesizing the research gap

UNIT II RESEARCH DESIGN AND DATA COLLECTION

Statistical design of experiments- types and principles; data types & classification; data collection - methods and tools

UNIT III DATA ANALYSIS, INTERPRETATION AND REPORTING

Sampling, sampling error, measures of central tendency and variation,; test of hypothesisconcepts; data presentation- types of tables and illustrations; guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript; guidelines for writing thesis, research proposal; References – Styles and methods, Citation and listing system of documents; plagiarism, ethical considerations in research

UNIT IV INTELLECTUAL PROPERTY RIGHTS

Concept of IPR, types of IPR – Patent, Designs, Trademarks and Trade secrets, Geographical indications, Copy rights, applicability of these IPR; , IPR & biodiversity; IPR development process, role of WIPO and WTO in IPR establishments, common rules of IPR practices, types and features of IPR agreement, functions of UNESCO in IPR maintenance.

UNIT V PATENTS

Patents – objectives and benefits of patent, concept, features of patent, inventive steps, specifications, types of patent application; patenting process - patent filling, examination of patent, grant of patent, revocation; equitable assignments; Licenses, licensing of patents; patent agents, registration of patent agents.

COURSE OUTCOMES PROGRESS THROUGH KNOWLEDGE TOTAL: 45 PERIODS

Upon completion of the course, the student can

CO1: Describe different types of research; identify, review and define the research problem CO2: Select suitable design of experiment s; describe types of data and the tools for collection of data

CO3: Explain the process of data analysis; interpret and present the result in suitable form CO4: Explain about Intellectual property rights, types and procedures

CO5: Execute patent filing and licensing

REFERENCES:

- 1. Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 11e (2012).
- 2. Soumitro Banerjee, "Research methodology for natural sciences", IISc Press, Kolkata, 2022,
- 3. Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.
- 4. David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

5. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR31	11	CO	NTROL S	SYST	EMS D	DESIGN	LABOR	ATORY	L	Т	Ρ	С
									0	0	3	1.5
		JECTIVI										
			ne Modell	-	•							
		•	oller usin	•			•					
3.	To eval	luate, an	alyze and	d des	sign a c	control s	stem of	servomot	ors for ı	notior	cor	ntrol.
1.	Mathematical Modelling and Simulation of a Physical Systems.											
2.	Simulation and Reduction of Cascade and Parallel, and Closed Loop Sub-System.											tom
3.								iven Trans				ioni.
4.		-		-		-	-	System E				and
		ency Dor		0.011	norun			Cystom L	-944101			and
5.			d Analysis	s of F	Root-Lo	ocus and	d Bode F	Plot.				
6.								er Combir	nations	for F	irst	and
			Systems									
7.			Motor velo									
8.								g PID cont				
9.								controller				
10.	Realiz	ation of	control in	n inve	erted pe	endulum	using P	ID control	ler			
				-	-11	NH	10	С т	OTAL	45 PI		פחר
			-	1	100		N.S		OTAL	4J F1		503
COUR	SE OU	TCOME	S:	3								
			is course,	, the	studen	ts will b	e able to	141				
CO1	Reco	gnize the	e fundame	ental	s of co	ntrol sys	tem para	ameters.				
CO2								on parame				
CO3	Evalua	ate and	analyse tl	he pe	erforma	ance of o	control sy	ystem and	I motior	n parai	nete	ers.
		_								1		
		COs				PC	-					
			1		2	3	4	5	6			
		1	1		1	1	1		1			
		2	2		2	2	2	2	2			
		3	3		2	2	2	3	2			
		Avg	PRO2	DEC	2.5	1.67	1.67	2.5	1.67			
		Ĺ								1		

V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3	2112	COMPUT			LING -	MINI PR	OJECT	L	Т	Р	С
								0	0	3	1.5
								•	•	•	
COL	JRSE OF	BJECTIVES):								
1.	Τοι	Inderstand	the method	/Concep	ots in Des	sign and	the use of	of soft	ware.		
2.	То с	lesign and a	assembly i	nvolved i	n various	s automa	ated syste	ms.			
3.		demonstrat							e for	sel	ected
		lication									
	- 1 1										
MIN	I PROJE	CT									
(EV/	ALUATIO	ON - INTER	NAL EXA	MINATIC	N SIMIL	AR TO I	MINI PRO	JEC1	rs or	ILY)	
Stude	ents has	to practice	e the follo	wing mo	delling	task for	the first	20 Pe	riods	dur	ation
1	. 2D m	odeling and	3D mode	ling of Be	earing, a	nd Coup	lings.				
2	2. 2D m	odeling and	3D mode	ling of G	ears and	Ball scre	ew.				
3	8. 2D m	odeling and	3D mode	ling of Sł	neet meta	al compo	onents.				
4		odeling and									
5		eling and sir									
6		eling and sir									
7		eling and sir							and p	pinior	۱.
8	3. Mode	eling and sir	nulation of	mechan	ism of Be	elt and cl	hain drive	es.			
2	. 3D M SCAF 2. 3D M	the follow Modeling a RA/Delta/ D lodeling and dent has to	nd assen rone Lassembly	nbly of of Autor	serial notive su	manipula Ibsystem	ators – ns.	Ganti	ry/ A	rticu	lated/
		-				_	тот		45 P	FRI	פחר
00		JTCOMES:		1=	1=	1	1017		τJ Γ		.03
		etion of this		e student	s will be	able to:					
CO1		ign and dra					and mo	del de	evelor	men	ts for
		selected pro		- mout		usoigi					
CO2		emble the p		mulate m	notion fur	nctionalit	v of the n	nodel	virtua	llv.	
002			e knowled								
COS	K I∏∆m							In m		ערט או	stem
CO3				ige of e	omputer	aldeu n	nouening	in mu		., -,	rstem
CO3		elopment.	OGRES		omputer	alded II	nouening			., .,	rstem
CO3		elopment.	UGRES		Juon M	NVWI	nouenng				rstem
CO3			UUKES	STAK	PO	S NO WI	EDGE			., .,	vstem
CO3		elopment.	1	2	Juon M	NVWI	5	6		., .,	rstem
CO3		COs	1 1	2 3	PO	s 4 -	5 1	6 3			vstem
CO3		COs	1 1 1	2 3 3	PO: 3 - -	s 4 - 1	5 1 2	6 3 3			vstem
CO3		COs	1 1	2 3	PO	s 4 -	5 1	6 3			rstem

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	201	MECHATRONICS SYSTEM DESIGN	L	Т	Ρ	С
			3	0	0	3
		BJECTIVES:				
	To enl system	ist the various elements required to design and integr s.	ate ti	ne me	echatr	onic
2. 7	To acq	uire the Modelling skill to capture the system dynamics of	hybri	d syst	ems.	
3. 7	To fan	niliar the system identification techniques and to pract	tice t	he de	esign	and
		bly of mechatronics system and fine tuning the design and	d con	trol fo	real	time
		development in software environment.				
		oly the optimization procedure for the appropriate select elements and process parameter optimization.	ction	of me	echatr	onic
		derstand, apply, analyze and evaluate the functions of ting the virtual elements of mechatronics.	syste	ems n	nodels	s for
UNIT		ELEMENTS OF MECHATRONICS				9
Elem Mech	ents – natronic	quirements in Real World Problems - Mechatronics Syst Identification of Key Elements in Various Systems - Ap is System Design Process - Recent Advancements in Mec omation.	plicat	ion O	vervie	ew −
UNIT		SYSTEM MODELLING				0
		odelling – Systems Overview – Representation of System	ma in	Ctoto	- Cno	9
Analc	ogue A	pproach – Parametric and Non-Parametric Modelling - Bo g of Electrical, Mechanical, Thermal, Fluid and Hybrid Sys	ond G			
UNIT	. III	SYSTEM IDENTIFICATION				•
		tification – White, Grey and Black Box Modelling - Oververte Least Square Method, Statistical Analysis of LS meth				
Regre limita Funda	ession- tions amenta	ntification – White, Grey and Black Box Modelling - Over	od, F prithm	ossib	ilities Simula	near and ation
Regre limita Funda Proto	ession- tions amenta otyping	ntification – White, Grey and Black Box Modelling - Overv Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algo als – Simulation Life Cycle – Hardware-In-Loop Simulati –Software's for Simulation and Integration	od, F prithm	ossib	ilities Simula	near and ation
Regre limita Funda Proto UNIT Optim Progr	ession- tions amenta otyping IV nizatior rammin	ntification – White, Grey and Black Box Modelling - Overv Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algo als – Simulation Life Cycle – Hardware-In-Loop Simulati	od, F orithm on (F	Possib - (IIL) -	ilities Simula Contr Nonlin	near and ation oller 9 near
Regre limita Funda Proto UNIT Optim Progr Partic	ession- tions amenta otyping <u>IV</u> nizatior rammin cle Swa	htification – White, Grey and Black Box Modelling - Overver Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algo als – Simulation Life Cycle – Hardware-In-Loop Simulati –Software's for Simulation and Integration SIMULATION AND DESIGN OPTIMIZATION n – Problem Formulation - Constraints – Overview of L ng Techniques – Advanced Optimization Techniques –	od, F prithm on (F .inear Gen	Possib - S IIL) - and etic a	ilities Simula Contr Nonlin Igorith	near and ation oller 9 near
Regre imita Funda Proto UNIT Optim Progr Partic UNIT Mode Motor	ession- tions amenta otyping <u>IV</u> nizatior rammin cle Swa <u>V</u> elling of r Vehic	 htification – White, Grey and Black Box Modelling - Overvente Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algorals – Simulation Life Cycle – Hardware-In-Loop Simulati –Software's for Simulation and Integration SIMULATION AND DESIGN OPTIMIZATION Problem Formulation - Constraints – Overview of Log Techniques – Advanced Optimization Techniques – arm Optimization 	od, F prithm on (H .inear Gen SYS ial Ma ulatio	Possib IL) - S and etic a TEMS	ilities Simula Contr Nonlin Igorith	near and ation oller 9 near nm - 9
Regre limita Funda Proto UNIT Optim Progr Partic UNIT Mode Motor	ession- tions amenta otyping <u>IV</u> nizatior rammin cle Swa <u>V</u> elling of r Vehic	 Intification – White, Grey and Black Box Modelling - Overvent Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algorals – Simulation Life Cycle – Hardware-In-Loop Simulati –Software's for Simulation and Integration Integration Simulation - Constraints – Overview of Log Techniques – Advanced Optimization Techniques – arm Optimization Integration CASE STUDIES ON MODELING OF MECHATRONIC Manufacturing Systems, Transportation System, Industriale, Aerial Vehicle, Underwater Vehicle - Modelling and Simulation Software – Toolbox 	od, F prithm on (H .inear Gen SYS ial Ma ulatio	Possib - S IIL) - and etic a TEMS anipula	ilities Simula Contr Nonlin Igorith	near and ation oller 9 near m - 9 _ight
Regre limita Funda Proto Optim Progr Partic UNIT Mode Motor subsy	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems	 Intification – White, Grey and Black Box Modelling - Overvent Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algorals – Simulation Life Cycle – Hardware-In-Loop Simulati –Software's for Simulation and Integration Integration Simulation - Constraints – Overview of Log Techniques – Advanced Optimization Techniques – arm Optimization Integration CASE STUDIES ON MODELING OF MECHATRONIC Manufacturing Systems, Transportation System, Industriale, Aerial Vehicle, Underwater Vehicle - Modelling and Simulation Software – Toolbox 	od, F prithm on (H .inear Gen SYS ial Ma ulatio	Possib - S IIL) - and etic a TEMS anipula	ilities Simula Contr Nonlin Igorith ator, L	near and ation oller 9 near m - 9 _ight
Regre limita Funda Proto Optim Progr Partic Motor Subsy COUI	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O	 Intification – White, Grey and Black Box Modelling - Overvent Least Square Method, Statistical Analysis of LS meth with empirical modeling -Parameter Estimation-Algorals – Simulation Life Cycle – Hardware-In-Loop Simulati –Software's for Simulation and Integration SIMULATION AND DESIGN OPTIMIZATION Problem Formulation - Constraints – Overview of Log Techniques – Advanced Optimization Techniques – arm Optimization CASE STUDIES ON MODELING OF MECHATRONIC Manufacturing Systems, Transportation System, Industriale, Aerial Vehicle, Underwater Vehicle - Modelling and Sim – Overview Modelling and Simulation Software – Toolbox To 	od, F prithm on (H .inear Gen SYS ial Ma ulatio	Possib - S IIL) - and etic a TEMS anipula	ilities Simula Contr Nonlin Igorith ator, L	near and ation oller 9 near m - 9 _ight
Regre limita Funda Proto UNIT Optim Progr Partic UNIT Mode Motor subsy COUI Upon	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O a compl	Arrial Vehicle, Underwater Vehicle - Modelling Systems, Transportation System, Industri Arange Systems, Transportation System, Industri Aerial Vehicle, Underwater Vehicle - Modelling and Simulation UTCOMES: etion of this course, the students will be able to: avarious elements of mechanical, electrical, thermal and	od, F prithm on (H .inear Gen SYS ial Ma ulatio ces TAL	Possib IL) - S IL) - and etic a TEMS anipula n of A	ilities Simula Contr Nonlin Igorith ator, L utomo	near and ation oller 9 near m - ight otive
Regre imita Funda Proto Dptim Progr Partic Mode Motor <u>Subsy</u> COUI	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O a compl State para Desc	Arrial Vehicle, Underwater Vehicle - Modelling and Simulation Systems, Transportation System, Industrial Systems, Transportation System, Industriale, Aerial Vehicle, Underwater Vehicle - Modelling and Simulation Software - Toolbox UTCOMES: etion of this course, the students will be able to: avarious elements of mechanical, electrical, thermal and meters to model the system.	od, F prithm on (H inear Gen SYS ial Ma ulatio ces TAL	Possib - S IIL) - and etic a TEMS anipula n of A 45 F	ilities Simula Contr Nonlia Igorith ator, L utomo	near and ation oller 9 near m - 9 ight otive 9
Regre imita Funda Proto Optim Progr Partic Mode Motor Subsy COUI Upon CO1	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O compl State para Desc ident	Arial Vehicle, Underwater Vehicle - Modelling and Simulation Systems, Transportation System, Industri Case Studies of Modelling and Simulation Techniques - Advanced Optimization Techniques - Advanced Optimization Techniques - Advanced Optimization Techniques - Advanced Optimization System, Industri Case Studies, Underwater Vehicle - Modelling and Sim - Overview Modelling and Simulation Software - Toolbox To Utromes: etion of this course, the students will be able to: e various elements of mechanical, electrical, thermal and meters to model the system. cribe the parameter selection and different types of ification and optimization. elop the model, identify and optimize by selecting the input	od, F prithm on (H inear Gen SYS ial Ma ulatio ces TAL fluid	Possib - S IIL) - and etic a TEMS anipula n of A 45 P system	ilities Simula Contr Nonlin Igorith ator, L utomo ERIO m and	near and ation oller 9 near m - ight otive 9 9 J the the
Regre limita Funda Proto Optim Progr Partic UNIT Mode Motor subsy COUI Upon CO1 CO2 CO3	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O State para Desc ident Deve of a s	Arial Vehicle, Underwater Vehicle - Modelling and Simulation Systems, Transportation System, Industri Case Studies, Underwater Vehicle - Modelling and Simulation of this course, the students will be able to: Overview Modelling and Simulation Software - Toolbox To UTCOMES: evarious elements of mechanical, electrical, thermal and meters to model the system. cification and optimization. Comparison of the system. constraints of the s	od, F prithm on (H inear Gen SYS ial Ma ulatio ces TAL fluid	Possib - S IIL) - and etic a TEMS anipula n of A 45 P system tem	ilities Simula Contr Nonlin Igorith ator, L utomo ERIO m and	near and ation oller 9 near m - ight otive 9 9 J the the
Regre limita Funda Proto Optim Progr Partic Motor subsy COUI Upon CO1 CO2 CO3 CO3	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O State para Desc ident Deve of a s	Arial Vehicle, Underwater Vehicle - Modelling and Simulation System, Industrie Arman Vehicle, Underwater Vehicle - Modelling and Simulation Structuring Systems, Transportation System, Industri Aerial Vehicle, Underwater Vehicle - Modelling and Sim Overview Modelling and Simulation Software - Toolbox TO UTCOMES: etion of this course, the students will be able to: e various elements of mechanical, electrical, thermal and meters to model the system. cribe the parameter selection and different types of ification and optimization.	od, F prithm on (H inear Gen SYS ial Ma ulatio ces TAL fluid	Possib IL) - S IL) - and etic a TEMS anipula n of A 45 P system tem i output	ilities Simula Contr Nonlin Igorith ator, L utomo ERIO m and model	near and ation oller 9 near m - 1 9 -ight otive 0 0 5 1 the lling, bles
Regre limita Funda Proto Optim Progr Partic UNIT Mode Motor subsy COUI Upon CO1 CO2 CO3	ession- tions amenta otyping IV nizatior rammin cle Swa V elling of r Vehic ystems RSE O compl State para Desc ident Deve of a s Desi Integ	Arial Vehicle, Underwater Vehicle - Modelling and Simulation Systems, Transportation System, Industri Case Studies, Underwater Vehicle - Modelling and Simulation of this course, the students will be able to: Overview Modelling and Simulation Software - Toolbox To UTCOMES: evarious elements of mechanical, electrical, thermal and meters to model the system. cification and optimization. Comparison of the system. constraints of the s	od, F prithm on (H inear Gen SYS ial Ma ulatio ces TAL fluid sys and simula able	Possib IL) - S IL) - and etic a TEMS anipula n of A 45 P system tem n output ation. to fine	ilities Simula Contr Nonlin Igorith ator, L utomo ERIO m and model	near and ation oller 9 near m - ight otive 9 J the lling, bles

the DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

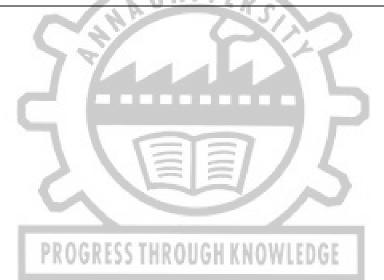
REFERENCES

- 1. Bradley, D. Dawson, N.C.Burd and A.J. Loader, "Mechatronics: Electronics in Product and Process", Chapman and Hall, London, 1999.
- Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Addison Wesley Longman Ltd.6th edition, 2013.
- 3. Brian Morriss, "Automated Manufacturing Systems Actuators Controls, Sensors and Robotics", McGraw Hill International Edition, 2000.
- 4. Devadas Shetty, Richard A.Kolkm, "Mechatronics System Design", PWS Publishing Company, 2009.
- 5. Ogata.K, "Modern Controls Engineering", Prentice Hall of India Pvt. Ltd.5thediton, 2009.

<u> </u>	POs						
COs	1	2	3	4	5	6	
1	1	1	2	3	2	3	
2	1	1	2	3	2	3	
3	1	1	2	3	2	3	
4	1	1	2	3	2	3	
5	1	1	2	3	2	3	
Avg	1	1	2	3	2	3	

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3251INDUSTRIAL ROBOTICSLTP300									
<u> </u>			3	0	0	3			
1.		BJECTIVES: <i>w</i> the basic terminologies, classification, configurations and com	none	nte	ofse	rial			
••	manipu		pone	/11.5	01 30				
2.		erstand the mechanical design and robot arm kinematics							
3.		n and understand the various linear control techniques on mani	pulat	ors					
4.		n and understand the various non-linear control techniques on I							
5.	To lear	n the robot programming and demonstrate the robot in various	appli	catio	ons				
UN	ITI	INTRODUCTION TO SERIAL MANIPULATORS				9			
		ndustrial Robots, Definitions – Classifications Based on W							
		s Configurations and Control Loops - Coordinate Systems – N							
		and Functions - Specifications - Robotic Sensor - Position	and	Pro	ximi	ty's			
Ser	nsing – T	actile Sensing – Sensing Joint Forces.							
		MECHANICAL DESIGN OF ROBOT SYSTEM				9			
-		on – Linkages and Joints – Mechanism – Method for Location a	nd O	rion	tatio	-			
		Kinematics of Robot Motion – Direct and Indirect Kinematics							
		tions – D-H Transformation – Drive Systems – End Effectors – 1							
		on and Design of Grippers – Gripper Force Analysis.	760	,		 .,			
UN		ROBOT DYNAMICS AND TRAJECTORY PLANNING				9			
con	itrol - Ty	order - Polynomial trajectory planning-control overview, Dyn pes of Programming – Teach Pendant Programming –Robotic control overview							
UN	IT IV	MOBILE ROBOTICS				9			
	ace and	obot and Legged Robot – Architecture - Configurations and S Mobility Issues - Teleportation and Control – Localization – Nav							
		APPLICATIONS OF ROBOTS				9			
Ins	pection. nderwat	e and working - Manufacturing Industries - Material Hanc Surgical robot – Haptics technology– Space vehicle and unmanr er- ROV, AUV – Robot in Nuclear industry – Humanoid Robots	ned a	eria	lveh	icle			
			45 F	PERI	ODS	5			
		UTCOMES:							
		letion of this course, the students will be able to:							
CO		ate about fundamental concepts of manipulators and mobile rob							
CO	ар	scribe the robot types, robot elements, numerical computation				the			
CO		lve the robot kinematics, dynamics, trajectory and path planning							
CO		alyze robot kinematics, dynamics, trajectory and path planning							
60	5 Cre	eate robot architecture, kinematic and dynamic solutions, progr	am t	ho r	-	for			
СО		given application in the environment.			0000				


Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

REFERENCES

- 1. Saeed B. Niku, "Introduction to Robotics: Analysis, Control, Applications", 3rd edition, John Wiley & sons, Inc., 2019.
- 2. John J. Craig, "Introduction to Robotics Mechanics and control", 3rd edition, Pearson Higher Education 2014.
- 3. K.S.Fu, Gonzalez, R.C. and Lee, C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill, 1987.
- 4. Groover, M.P., Weis, M., Nagel, R.N. and Odrey, N.G., "Industrial Robotics Technology, Programming and Applications", Mc Graw-Hill, Int., 2012.
- 5. Klafter, R.D., Chmielewski, T.A. and Negin, M., "Robotics Engineering An Integrated Approach", Prentice-Hall of India Pvt. Ltd., 1988.
- 6. Kevin M Lych and frank C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, First Edition, 2017.

<u> </u>	POs									
COs	1	2	3	4	5	6				
1	1	1	2	2	1	1				
2	1	1	2	2	1	1				
3	1	1	2	2	2	1				
4	1	1	2	2	2	2				
5	1	1	2	2	1	2				
Avg	1	1	2	2	1.4	1.4				

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	INDUSTRIAL AUTOMATION	L	Τ	Ρ	С
		3	0	4	5
	DBJECTIVES: derstand the importance of automation in industry and vario	ue in	duetria	letar	dard
	rs and process parameters to control the production proce		uusina	11 5101	luaru
	In PLC hardware, and practice the PLC programming a		imulati	ion in	real
syster			innaiai		Tour
	t knowledge on industrial standard data communication	n pro	tocols	. SC	ADA.
-	lized and decentralized control.			,	,
	introduced to factory layout, Total Integrated Automation of	n fac	tory ar	nd Ind	ustry
5. To get	exposure on building automation using sensors, controlle	rs an	d actua	ators	
UNITI	IDUSTRIAL INSTRUMENTATION AND CONTROL				9
Parameters Measureme Systems –	and Need for Automation - Instrumentation System for Me – Overview on Flow, Level, Pressure, Temperature, Speed ents – Proximity and Vision Based Inspection System Continuous and Batch Process – Feedback Control System ROGRAMMABLE LOGIC CONTROLLER	d, Cui s –	rrent ai Proces	nd Vo ss Co	ltage
	als of Programmable Logic Controller - Functions of PLC	~ E	ooturo	o of E	-
Selection of Communication	f PLC - Architecture – Basics of PLC Programming - Log ation in PLC – Programming Timers and Counters – I Advanced PLC.	ic La	dder D	iagra	ms –
UNIT III I	DATA COMMUNICATION AND SUPERVISORY CONTRO	DL SI	STEN	IS	9
Fieldbus -	ata Communications - Fiber Optics – Modbus – HART – D Introduction to Supervisory Control Systems – SCADA CS) – Safety Systems – Man-Machine Interfaces - Total I	- Dis	stribute	ed Co	ontrol
			aleu P	utom	allon
(TIA)	ACTORY AUTOMATION			utom	
(TIA) UNIT IV	ACTORY AUTOMATION				9
(TIA) UNIT IV I Factory Lay	out - Tools and Software Based Factory Modelling -Case	Stuc	ly on A	Autom	9 nated
(TIA) UNIT IV I Factory Lay Manufactur	yout - Tools and Software Based Factory Modelling -Case ing Units, Assembly Unit, Inspection Systems and PL Introduction to Factory Automation Monitoring Software-	Stuc	ly on A ased A	Autom Autom	9 nated nated
(TIA) UNIT IV I Factory Lay Manufactur Systems - System-So	yout - Tools and Software Based Factory Modelling -Case ing Units, Assembly Unit, Inspection Systems and PL Introduction to Factory Automation Monitoring Software-	Stuc	ly on A ased A	Autom Autom	9 nated nated
(TIA) UNIT IV I Factory Lay Manufactur Systems - System-So UNIT V 1 Industry 4.1	yout - Tools and Software Based Factory Modelling -Case ing Units, Assembly Unit, Inspection Systems and PL Introduction to Factory Automation Monitoring Software- ftware SMART TECHNOLOGIES FOR INDUSTRIAL 4.0 D-Challenges in Industry 4.0 - Big Data-Characteristics of	Stuc C Ba Buil	ly on A ased A ding A Data	Autom Autom Autom	9 nated nated ation 9
(TIA) UNIT IV I Factory Lay Manufactur Systems - System-So UNIT V 1 Industry 4. Intelligence	yout - Tools and Software Based Factory Modelling -Case ing Units, Assembly Unit, Inspection Systems and PL Introduction to Factory Automation Monitoring Software- ftware SMART TECHNOLOGIES FOR INDUSTRIAL 4.0 D-Challenges in Industry 4.0 - Big Data-Characteristics of - Machine to Machine Technologies - IoT-Digitization - Digitization - Digitizatio	Stuc C Ba Buil of Big gital	ly on A ased A ding A ⊡Data ∑win 45 Pl	Autom Autom Autom - Art ERIO	9 nated nated ation 9 ificial DS
(TIA) UNIT IV I Factory Lay Manufactur Systems - System-So UNIT V S Industry 4. Intelligence LIST OF E 1. Experim NAND, I 2. Impleme Program 3. Develop 5. Develop 6. Develop 7. Develop Material 8. Develop Control 9. Develop	 yout - Tools and Software Based Factory Modelling -Case ing Units, Assembly Unit, Inspection Systems and PL Introduction to Factory Automation Monitoring Software-ftware SMART TECHNOLOGIES FOR INDUSTRIAL 4.0 D-Challenges in Industry 4.0 - Big Data-Characteristics of - Machine to Machine Technologies - IoT-Digitization - Digitization - Di	e Stuc C Ba Buil of Big gital ID, O Diagra n PLO ttle Fi Mater entati g and d Pla	ly on A ased A ding A Data win 45 Pl R, NO am C. Iling S ial Har on Che ce Op	Autom Autom - Art ERIO T, NC ystem adling eck an eyor eratic	9 nated nated ation 9 ificial DS DR,
(TIA) UNIT IV I Factory Lay Manufactur Systems - System-So UNIT V I Industry 4. Intelligence LIST OF E 1. Experim NAND, I 2. Impleme Program 3. Develop 6. Develop 7. Develop Material 8. Develop 9. Develop	 Yout - Tools and Software Based Factory Modelling -Case ing Units, Assembly Unit, Inspection Systems and PL Introduction to Factory Automation Monitoring Software-ftware SMART TECHNOLOGIES FOR INDUSTRIAL 4.0 O-Challenges in Industry 4.0 - Big Data-Characteristics of - Machine to Machine Technologies - IoT-Digitization - Digitization - Digit	e Stuc C Ba Buil of Big gital ID, O Diagra n PLO ttle Fi Mater entati g and d Pla	ly on A ased A ding A Data win 45 P 45 P 45 P 1 R, NO am C. Iling S ial Har on Che Conve ce Op munica	Autom Autom - Art ERIO T, NC ystem adling eck an eyor eratic	9 nated nated ation 9 ificial DS DR, DR,

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COUF		S:										
Upon	completion of thi	is course, th	ne student	ts will be a	able to:							
CO1	communication and role of advanced technologies in automating the industry.											
CO2	Describe the operation of sensors, instrumentation, Logic controller, communication protocol, factory setup and smart technologies.											
CO3												
CO4	Implement the application.	selected s	ensor, pr	otocol ar	nd logic i	n controll	er to au	tomate an				
CO5	Create industry statistical and r				ing the p	arameters	to do a	analysis on				
REFE	RENCES											
	ank D, Petruzella	"Program	nable I og	ic Contro	ller" McGr	aw – Hill	Publicati	ons. 2016.				
	cas, M.P., "Distril											
	ckay S., Wrijut											
	sign, Installation											
	tranabis. D, "Pri											
	1.2^{nd} edition, 2016		naaotnai	inion dirito	nation,			labiloting				
	engwei Wang, "I		uildings a	nd Buildir	na Autom	ation" Ro	utledae I	Publishers				
200		ntoingont D	ananigo a	na Ballall	ig / atom		allougo	donorroro,				
200					h							
				PO	c							
	COs	1	2	3	4	5	6					
	1	1	1	1	2	61	2					
	2	1	1	1	2	1	2					
	3	2	1	2	2	2	1					
	4	2	1	2	2	2	1					
	5	2	1	2	2	1	1					
	Avg	1.6	1	1.6	2	1.4	1.4					

PROGRESS THROUGH KNOWLEDGE

V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR32	03		EMBEDDE	ED SYSTEN	S	L	T	P	C
COUR	SE O	BJECTIVE	s.			3	0	4	5
1.				nd fundame	ntal units of micro	ocontro	ller.		
2.	To kr	now the mic	rocontroller prog	ramming m	ethodology and to ious communicat	o acquir	e the		acing
3.		lesign the			amming of I/O				and
4.					re and its functing mechatronic st			et ou	it the
5.	To a		knowledge of re		bedded operatin			adva	anced
UNIT	I MI	CROCONT	ROLLER						9
Types Organ	Micro	controller - n - Instructio	8051 Family - A	Architecture ssing Modes					emory
					g – Instruction to	A = = = =			9
and II Progra Comm	DE - ammin nunicat	C Program g - Timer a	nming for 8051 and Counter - I PI and CAN of 80	Microcont	roller – Basic A Interfacing and htroller – Bluetoo	Arithme Prograi	tic ai mmin	nd Lo g of :	ogical Serial
UNIT			L INTERFACIN	G					9
Graph - Step	nic, RT per Mo	C, interfacir otors, DC M	ng of ADC and E	DAC, Senso rogramming	oard and Display rs - Relays - Sole – Closed Loop C ers.	enoid V	alve a	and H	leater
UNIT	IV A	RM 7 PROC	CESSOR						9
– Instr of ARM	uction M 7 - A	Sets – ARN Applications	ለ Thumb - Thum	nb State Reg	e – Modes of Op gisters – Pipelinir	ng – bas	sic pro		nming
					ND OPERATING				9
Langu – Rea	iage D I Time	escriptions Embeddec	 Real Time Kei Operating System rative Overview 	rnel - OS Ta tems - Real of C and Py	ables in Embedo sks - Task Scheo Time Programm thon for Embedo	duling - hing Lar	Kern nguag tems.	el Šei jes -	vices GPIO
1. Ass a) [e) (2. Alp	sembly Data T Code (phanur	y Language ransfer b) A Conversion neric and G		and Simulati ctions c) Cou	on of 8051. Inters d) Boolean g 8051 Microcon	and log			
5. Tin 6. Ste 808 7. I2C	ner, Co ep Mot 51. C Prog	ounter and I or (Unipolar ramming of	Interrupt Prograi r & Bipolar Moto 8051.	m Application () and PWN	I Servo Motor Co			facinę	g with
9. Inte	erfacin terfacir	g and Prog		sor with Re	Vi-Fi with 8051 al Time Embedde eal Time Embedd				
11. In	iterfac stems.	ing and P		Actuator v	vith Real Time	Embeo	dded		

My-DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and develop a system to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontrollers", McGraw Hill International, US 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontre Embedded Systems", Pearson Education, 2006. 7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. Vertice All 1 1 1 2 1 1 1 1 2 2 1 1 1 1 2 3 1 1 1 2 1											
COURSE OUTCOMES: Upon completion of this course, the students will be able to: CO1 Define the fundamentals of Microcontroller, Processor and Single board co CO2 Recognize the architecture, functions and features of Microcontroller, Processor and SBC CO3 Develop the skills in programming and communication with 8051 Microcon Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and Covelop a system to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programmi Applications", 2003 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontrol Embedded Systems", Pearson Education, 2006. 7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. V 1 1 1 2 1											
Upon completion of this course, the students will be able to: CO1 Define the fundamentals of Microcontroller, Processor and Single board colspan="2">Sour CO2 Recognize the architecture, functions and features of Microcontroller, Processor and SBC CO3 Develop the skills in programming and communication with 8051 Microcon Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and develop a system to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1 Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2 Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3 James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4 John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5 Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programmi Applications", 2003 6 Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontr Embedded Systems", Pearson Education, 2006. 7 Gay, W.W. (2014). The Raspberry Pi. In							TOTAL	105 F			
Co1 Define the fundamentals of Microcontroller, Processor and Single board co Recognize the architecture, functions and features of Microcontroller, Processor SBC Co3 Develop the skills in programming and communication with 8051 Microcon Processor and SBC Co4 Apply the skills in interfacing with 8051 microcontroller, Processor and Cevelop a system to a simulation model. Co5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontrollers", McGraw Hill International, US 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontroller Hardware Reference. Berkeley, CA. Pos Os Os Os Create software to realize in controllers", McGraw Hill International, US Stemeth J. Aylala, "The 8051 M			-	_							
CO2 Recognize the architecture, functions and features of Microcontroller, ProcessBC CO3 Develop the skills in programming and communication with 8051 Microcon Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and Coreate software to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programmi Applications", 2003 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontroller Hardware Reference. Berkeley, CA. Volspan="2">COS Volspan="2">COS Cos Volspan="2">Volspan="2">Volspan="2">Volspan="2" Intervolspan="2" Intervolspan="2" Volspan="2" Volspan="2"											
SBC CO3 Develop the skills in programming and communication with 8051 Microcom Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and develop a system to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programmi Applications", 2003 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontr Embedded Systems", Pearson Education, 2006. 7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. V Image: Cos flipside fl											
Processor and SBC CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and develop a system to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontrollers", McGraw Hill International, US 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontre Embedded Systems", Pearson Education, 2006. 7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. Vertice 1 1 1 1 2 1 1 1 3 1 1 1 4 1 1 2 1		SBC	SBC								
CO4 Apply the skills in interfacing with 8051 microcontroller, Processor and develop a system to a simulation model. CO5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programmi Applications", 2003 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontr Embedded Systems", Pearson Education, 2006. 7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. POs 1 1 1 2 3 1 1 1 2 4 1 1 2 1 1	CO3			amming a	nd comm	unication	with 8051	Microc			
CO5 Create software to realize in controller to perform the task. REFERENCES 1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 2006 2. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley. 3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003. 4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US 5. Kenneth J. Aylala, "The 8051 Microcontrollers", McGraw Hill International, US 6. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontre Embedded Systems", Pearson Education, 2006. 7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. Volspan="2">COs POs 1 1 1 2 2 1 1 1 2 V.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA. Volspan="2">Cos 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1	CO4	Apply the ski	ills in interfa	•		rocontrol	ler, Process	sor an			
REFERENCES1. Ball S.R., "Embedded Microprocessor Systems – Real World Design", Prer 20062. Frank Vahid and Tony Givagis, "Embedded System Design", 2011, Wiley.3. James W. Stewart, "The 8051 Microcontroller Hardware, Software and Int Regents Prentice Hall, 2003.4. John B. Peatman, "Design with Microcontrollers", McGraw Hill International, US5. Kenneth J. Aylala, "The 8051 Microcontroller, the Architecture and Programmi Applications", 20036. Muhammad Ali Mazidi and Janice Gillispic Mazdi, "The 8051 Microcontr Embedded Systems", Pearson Education, 2006.7. Gay, W.W. (2014). The Raspberry Pi. In: Raspberry Pi Hardware Reference. Berkeley, CA.POsCos111121311121311121311121311131113111113111 <t< td=""><th>CO5</th><td></td><td></td><td></td><th></th><th>rm the ta</th><th>sk</th><td></td></t<>	CO5					rm the ta	sk				
COs 1 2 3 4 5 6 1 1 1 1 1 - 2 2 1 1 1 1 1 2 3 1 1 1 2 1 - 4 1 1 1 2 1 - 5 2 1 1 - 1 1	3. J R 4. J 5. K 6. M 6. M 7. G	ames W. Stewa Regents Prentice ohn B. Peatman Cenneth J. Aylala Applications", 200 Juhammad Ali Embedded Syste Gay, W.W. (2014 Berkeley, CA.	art, ["] The 805 Hall, 2003. , "Design with a, "The 8051 I 03 Mazidi and ms", Pearsor	Microcon Microcon Microcontro Janice Gil Deducation	ntroller H trollers", N oller, the <i>i</i> lispic Ma n, 2006. n: Raspbe	lardware McGraw H Architectu zdi, "The rry Pi Ha	, Software a Hill Internatio ure and Proc e 8051 Mic	and In onal, U gramm rocont			
1 1 1 1 1 - 2 2 1 1 1 1 1 2 3 1 1 1 2 1 - 4 1 1 1 2 1 1 5 2 1 1 - 1 1		COs	1	2			5	6			
2 1 1 1 1 2 3 1 1 1 2 1 - 4 1 1 1 2 1 - 5 2 1 1 - 1 1		1		1	1			-			
3 1 1 1 2 1 - 4 1 1 1 2 1 1 5 2 1 1 - 1 1		_		1							
4 1 1 1 2 1 1 5 2 1 1 - 1 1					and the second s						
5 2 1 1 - 1 1					Lat	and the second s					
					1						
		Avg	1.2	1	1	1.5	1	1.2			

PROGRESS THROUGH KNOWLEDGE

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR	3211	ROBO	T SIMULA				D	L	Т	Ρ	С
								0	0	3	1.5
COL	JRSE O	BJECTIVI	ES:								
1.	manipu	lators for	ulate and trajectory								serial robot
	progra										
2.	Progra	mming me	integrated thods for pathods	art manuf	acturing.					•	
3.			ctice and ar							pectio	n and
			stem for din	nensional	and non-	dimensio	nal fea	ature	S		
		PERIMEN									
SIM	ULATIC	N AND P	ROGRAMN	ING OF I	ROBOTS						
1.	Simula	ation of Fo	rward and I	nverse Ki	nematics	of Planar	[.] Mani	pulat	ors.		
2.	Simula	ation of Fo	rward and I	nverse Ki	nematics	of Spatia	l Man	ipulat	tors.		
3.	Trajec	tory Plann	ing of Plane	er Manipu	lators.	-					
4.			ing of Spati								
5.			Serial Man								
•-	e g. e		iculated Rol								
			rtesian Rob			100					
			ARA			P					
PRC				INES	1.1.1.4						
1.			g on CNC F		ertical M	achining (Centre	and	Turni	na Ce	ntre
2.			EDM and V				Jonard		Turn	ng oc	intro
<u>2.</u> 3.	<u> </u>		Rapid Prote	and the second se	outting.		1				
					DECTION		here	-			
1.	1						-	_			
			Object So				-				
2.			ision Based				_		-		
3.			easurement			-			_		
4.		nated Meas	surement u	sing CMN	Simple I	Profiles.		-			
TOT				-					45 P	ERIO	DS
		UTCOME		NE			- 4				
			is course, th								
CO 1	Reco	ognize the	fundament	tals of Kin	nematics,	CNC Pr	ogram	nming	g and	Auto	nation
	Syste	ems.	-				<u> </u>				
CO2			el, create j						, ma	chinin	g and
	mea	surement of	operation.	CC TUD	ALLOU	UI OW	EDC	z			
CO3			t and identi						ess/m	easur	ement
	techi	nique for g	iven applica	ation.			2				
										-	
					PO	S					
		COs	1	2	3	4	5		6		
		1	1	3	3	3	2		2		
	_	2	1	3	3	3	2		2	-	
	_		•							_	
		3	1	3	3	3	2		2	_	
		Avg	1	3	3	3	2		2		

V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3	212	MECHA	TRONICS	SYSTEM I	DESIGN - I	MINI PR	OJECT	L	Τ	Ρ	С
								0	0	3	1.5
		DBJECTIV									
1.				ated to sys		<u> </u>					
2.				opriate con		•		imul	ation	•	
3.			re to perfo	rm simulati	ion of the c	levelope	d model.				
	PROJ	-									-
EV	ALUA	TION - INT	ERNAL E	XAMINAT	ION SIMIL	AR TO N	AINI PRC	JEC	TS C	ONLY	
		Parallel Ma Aerial Robo	•								
Fina	• [d its Autom	notive Sub It the proje	•	vith a re	port.				
Fina TOT	• 1 • \ ally, stu	Vehicle and	d its Autom		•	vith a re	port.		45	PERI	ODS
TOT COU	• [• \ ally, stu AL IRSE (Vehicle and udent has DUTCOME	d its Autom to presen	it the proje	ect along v	_	port.		45	PERI	ODS
TOT COU Upor	• [• \ NIIy, stu AL IRSE C	Vehicle and udent has DUTCOME	d its Autom to presen S: is course,	t the projet the studen	ect along w	ble to:	-			PERI	ODS
TOT COU Upor CO1	• [• \ NIIV, str AL IRSE (n comp De	Vehicle and udent has DUTCOME Deletion of the evelop the	d its Autom to presen S: is course, physical m	t the project the studen	ect along v ts will be a control para	ble to: ameters o	of the sys	stem		PERI	ODS
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the evelop the nalyse the	d its Autom to presen S: is course, physical m model by c	the studen the studen nodel and c considering	ect along w ts will be a control para different w	ble to: ameters o ariables.	of the sys				
TOT COU Upor CO1	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the evelop the nalyse the	d its Autom to presen S: is course, physical m model by c	t the project the studen	ect along w ts will be a control para different w	ble to: ameters o ariables.	of the sys				
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the evelop the nalyse the	d its Autom to presen S: is course, physical m model by c	the studen the studen nodel and c considering	ect along w ts will be a control para different w to analyse	ble to: ameters o ariables the deve	of the sys				
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the velop the nalyse the oply the rea	d its Autom to presen S: his course, physical m model by c al system p	the studen nodel and c considering parameters	ect along w tts will be a control para different w to analyse POs	ble to: ameters o ariables the deve	of the sys		in th		
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the evelop the nalyse the oply the rea	d its Autom to presen S: iis course, physical m model by c al system p	the studen nodel and c considering parameters	ect along w ts will be a control para different w to analyse	ble to: ameters of rariables the deve 4	of the sys		in th		
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the velop the nalyse the oply the rea	d its Autom to presen S: his course, physical m model by c al system p	the studen nodel and c considering parameters	ect along w tts will be a control para different w to analyse POs	ble to: ameters of ariables the deve	of the sys		in th		
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the velop the nalyse the oply the rea COs 1 2	d its Autom to presen S: iis course, physical m model by c al system p	the studen nodel and c considering parameters	ect along w ts will be a control para different w to analyse POs 3	ble to: ameters of rariables the deve 4	of the sys		in th		
TOT COU Upor CO1 CO2	Illy, stu Illy, stu IRSE C De Ar	Vehicle and udent has DUTCOME Deletion of the evelop the nalyse the oply the rea COs 1	d its Autom to presen S: is course, physical m model by c al system p 1	the studen nodel and c considering parameters 2 3	ect along weights will be a control para different weight to analyse POs	ble to: ameters of ariables the deve 4 3	of the sys eloped m 5 2		in th 6 3		

PROGRESS THROUGH KNOWLEDGE

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR33	11		PR		L	Т	Ρ	С			
								0	0	12	6
COUF		DBJECTIVE									
1.			lents to sele		•			•			
			and its interc								
2.			analyse lite			ected pro	blem for	r stud	y and	prop	ose
			cope of dise								
3.			pothesis ar								and
			lication of k	nowledge	in the pro	posed fie	ld of dise	sertat	on wo	ork.	
EVAL				- (al an that	<u></u>		l. (l			
1.			may be sele								
			themselve								
			chosen that eloping algo								
			research.								
		in dissertati			Survey a	iu a part (Jeer			icu
2.			f the project	t is evalua	ted based	d on a mir	nimum of	three	revie	ws an	id a
			ee may be								
3.	The	project wo	rk is evalua	ted jointly	by exter	nal and in	iternal e	xamin	ers co	onstitu	Ited
			the Departr					the pr	oject	report	
4.	A pr	oject report	t for disserta	ation-I is to	o be subr	nitted at th	ne end.				
5.	Proj	ect work ev	aluation is t	based on t	the Regul	ations of t	he Credi	t syst	em fo	r the F	Post
		duate progra	ammes of A	nna Unive	ersity	4.C.N	-				
ΤΟΤΑ			<u></u>	y a					180 F	PERIO	DS
		OUTCOME			- III		~~				
Upon			s course, th								
			ledge gaine			and practi	cal cours	ses, a	nd the	e prob	lem
CO1			gh the litera								
CO2		•	l and exp	periment/d	levelop o	optimal s	olution	for p	oroble	m be	eing
		stigated.		-			1. P				
CO3			terpretate tl					and s	synthe	sis of	the
	info	rmation to p	provide valic	l conclusio	ons and s	ubmit rep	ort.				
	П						100				
		COs			POs	S					
		000	1	2	3	4	5		ò		
		1	PR 3 GR	SS 3HR	3	3	3	3	3		
		2	3	3	3	3	3		3		
		3	3	3	3	3	3	3	3		
		Avg	3	3	3	3	3	3	3		
	L					•		•			

ih DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3312			INTERNSHIP						Т	Ρ	С	
								0	0	2	1	
COURSE OBJECTIVES:												
1.		To assess defined problems in the industry and to provide the feasible solutions based										
-		the skills of the graduate through internship										
2.	 To assess and acquire the training by observing and analyzir various machineries and its elements in the industrial training. 									tionin	g of	
0		5										
3.	To acquire certified training on various design and automation systems and t technologies offered by state / central approved institution.										Ineir	
INT	ERNSH		Su by State		appioved							
	_	-	ems in the	industry	for at leas	st two wee	eks and t	o prov	/ide th	ne fea	sible	
To assess defined problems in the industry for at least two weeks and to provide the feasible solutions based on the skills of the graduate through internship												
		DUTCOMES										
		pletion of this										
CO 1		Recognize the problem in the existing system.										
CO2											and	
007	implement the learned technologies on the platform.										4:0.0	
CO3	D3 Enable students to communicate technical information in form of oral pres and technical report in form of dissertation									esenta	ation	
	anu											
		COs	POs									
		003	1	2	3	4	5	6				
		1	2	3	3	2	2	3				
		2	2	3	2	3	2	3				
		3	3	3	3	3	2	3				
		Avg	2.33	3	2.67	2.67	2	3				
			1	-	-							

PROGRESS THROUGH KNOWLEDGE

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3411		PROJECT	VORK - II		L	Т	Р	С		
					0	0	24	12		
COURSE	OBJECTIV	ES:								
	To define	a problem	/need for	· developr	nent and	analys	is in the	field of		
1.	mechatroni	ics and its	interdiscip	olinary are	a and it	may be	a continu	uation of		
		n -I or newly								
		hensively re								
2.		/ methodolo			scientific	and sys	tematic ap	plication		
		ge in the fie								
	To design, model, simulate, develop algorithms, fabricate, integrate and system									
3.	elements for automating the system for sustainable development and									
		l considerat	ion.							
EVALUA [®]										
1.		ss of the pro								
2.		committee								
		eport is rec								
3.		ointly by ex						Head of		
		ment based								
4.		k evaluatior			julations o	f the Cre	edit system	n for Post		
	graduate p	rogrammes	of Anna L	Iniversity.	-					
TOTAL					360) PERIO	DS			
	OUTCOME	-		ILVE						
	npletion of th									
CO1		knowledge			heoretical	and pr	actical co	ourses in		
		and solving			2.44	\odot				
CO2		nd interpret				ata, and	synthesiz	e of the		
	factual info	ormation's to	arrive at	valid concl	usions	1				
CO3	Enable stu	dents to cor	nmunicate	e technical	informatio	on in forr	n of oral			
	presentatio	on and tech	nical repor	t in form of	f dissertat	ion				
						1	<u> </u>			
				POs						
	COs	1	2	3	4	5	6			
	1	3	3	3	3	3	3			
	2	3	3	3	3	3	3			
	3	3	3	3	3	3	3			
	Avg	3	3	3	3	3	3			
		PRACE	CCTUD	ALICU V	NAWLE	NCE				
		ERVORE	25.1114	VUOU N	UALLE	NAE -				

MR30	51	MULTI-BODY DYNAMICS AND CONTROL	L	Т	Ρ	С				
			3	0	0	3				
COUR	COURSE OBJECTIVES:									
1.	To understand the importance of dynamics in analyzing the behavior of mechanical systems.									
2.	To develop proficiency in using computational methods for dynamic analysis of multibody systems.									
3.	To a	pply stability analysis techniques to assess the stability of	non	linear	syste	ms.				
4.		haracterize the behavior of nonlinear systems using phase ribing function.	e pla	ane ar	nalysis	and				
5.		design control strategies to achieve desired perforn nanical systems.	nano	ce in	nonli	inear				
UNIT I		INTRODUCTION TO DYNAMICS			Atte	.9ed				

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

Importance of Multibody Dynamics - Particle Mechanics - Rigid Body Mechanics - Deformable Bodies - Constrained Motion- -Kinematics - Rotation - Translation - Velocity-Acceleration Equations – Mechanics of Deformable Bodies - Floating Frame Reference Formulation – Inertia - Generalized Forces - Equation of Motions - Multi Body Systems - Sub Systems - Friction and Spring Nonlinear Model - Nonlinear Dynamic Equations Formulation

UNIT II COMPUTATIONAL METHODS FOR DYNAMIC ANALYSIS

9

9

9

9

Jacobian Matrix - Newton-Raphson Method - Nonlinear Kinematic Constrain Equation – System Mass Matrix - External and Elastic Forces - Acceleration Vector – Lagrangean Multiplier - Langrage's Equation – Kinetic Energy – Hamilton Equation - Hamilton vector Field- Euler - Langrage Equation- Generalized Reaction Forces – State Vector and Equation Formulation.

UNIT III NONLINEAR SYSTEMS AND CONCEPTS

Linear Time Varying and Linearization – Input and Output Stability - Lyapunov Stability Analysis – Asymptotic Stability - Popov's and Circle Criterion - Perturbed System – Chaos – Periodic Orbits- Index theory and Limit Cycle – Centre Manifold Theory- Normal Forms-Nonlinear analysis- Poincare Maps - Bifurcations – Maps - Vector Fields - Methods – Control System Design using Lyapunov's Direct Method.

UNIT IV SYSTEM CHARACTERIZATION

Stability, Controllability, Observability - Phase Plane Analysis - Phase Portrait - Limit Cycle - Describing Function - Assumption – Limit Cycles.

UNIT V CONTROL OF NONLINEAR MECHANICAL SYSTEMS

Double Inverted Pendulum - Nonlinear Machineries - Robots - Suspension System - Aircraft.

TOTAL 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1 Describe the fundamental concepts and principles of dynamics in mechanical systems.
- **CO2** Apply computational methods for analyzing and solving dynamic problems in multibody systems.
- CO3 Analyze and evaluate the stability and behavior of nonlinear systems using mathematical techniques.

CO4 Characterize and assess the properties of mechanical systems, such as stability, controllability, and observability.

CO5 Design and implement control strategies to achieve desired performance in nonlinear mechanical systems.

REFERENCES

- 1. Ahmed A. Shabana, "Dynamics of Multibody Systems", Cambridge University Press, fifth edition, 2020.
- 2. Brian L. Stevens, Frank L. Lewis, "Aircraft Control and Simulation", Wiley India Pvt Ltd, third Edition, 2016.
- 3. Hasan Khalil, "Nonlinear Systems and Control", Prentice Hall, 2018.
- 4. Mahmut Reyhanoglu, "Dynamics and Control of a Class of Under Actuated Mechanical Systems", IEEE Transactions on Automatic Control, 44(9), 2013.
- 5. Stephen Wiggins, "Introduction to Applied Nonlinear Dynamics System and Chaos", Springer-Verlag, Fouth Edition, 2018.
- 6. Wei Zhong and Helmut Rock, "Energy and Passivity Based Control of the Double Inverted Pendulum on a Cart", IEEE, 2019.

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

			PO	c		
COs	1	2	3	s 4	5	6
1	1	1	2	1	-	-
2	2	1	2	1	3	-
3	2	1	1	1	3	-
4	1	1	2	1	1	-
5	2	1	1	1	2	-
Avg	1.6	1	1.6	1	1.8	-

V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	02	MOBILE ROBOTICS	L	Τ	Ρ	С
00115			3	0	0	3
		BJECTIVES:	1:00			
1.		ow the fundamental concepts and principles of mobile robo			in a F	
2.		proficiency in programming and implementing mobile robots				
3.		op skills in sensor integration, perception, and localization			robo	IS.
4.		planning and navigation techniques for mobile robot autor				
5.	Арріу	knowledge and skills to design and build functional mobile		ot pro	ιοτγρ	es.
UNIT	I IN	TRODUCTION TO MOBILE ROBOTICS				9
Introdu	uction -	- Locomotion of the Robots – Key Issues on Locomotion – L	egge	ed Mol	oile R	oots
		ons and Stability – Wheeled Mobile Robots – Design Space		Mobil	ity Is	sues
UNIT I		Aerial and Underwater Vehicles – Teleportation and Contr NEMATICS	01.			9
			۱۸/۲		nd D	-
		odels – Representation of Robot – Forward Kinematics - Degree of Mobility and Steerability – Maneuverability – Wo				
		- Path and Trajectory Considerations – Motion Controls - H				
		nd Feedback Motion Control – Humanoid Robot - Kinemat				–
UNIT		ERCEPTION	100 0			9
_		obile Robots – Classification and Performance Characteriza	ation	– Wh	eel/M	-
		eading Sensors - Ground-Based Beacons - Active Rang				
		Vision Based Sensors - Uncertainty - Statistical Rep				
		- Feature Extraction Based on Range Data (Laser, Ultras				
		sual Appearance based Feature Extraction.				
UNIT		OCALIZATION				9
The C	halleng	ge of Localization - Sensor Noise and Aliasing - Effector N	loise	e – Lo	caliza	ation
		gation Versus Programmed Solutions - Belief Represe				
		Belief And Multiple-Hypothesis Belief - Map Represent				
		ons - Decomposition Strategies - Current Challenges In Ma				
		Map-Based Localization - Markov Localization - Kalman				
		ased Navigation - Globally Unique Localization - Positioning				
		Localization - Autonomous Map Building - Stochastic Map		chniqu	ie - C	Iner
			TC			•
UNIT		LANNING, NAVIGATION AND COLLABORATIVE ROBO		0.46 D		9
		- Competences for Navigation: Planning and Reacting				
		bidance - Navigation Architectures - Modularity for Code R lization - Techniques for Decomposition - Case Studies – C				
	rm Rol		onat	Joran		0013
0110		TOTAI	4	5 PEF		s
COUR		JTCOMES:				-
		tion of this course, the students will be able to:				
CO1		I the key issues, configurations, and types of mobile robots,	as w	ell as	kiner	natic
		Is and sensor classifications.				-
CO2		rstand the concepts of locomotion, perception,	loca	alizati	on,	and
		ing/navigation in mobile robotics.				
CO3		kinematic models, sensor data processing technique	s, a	nd lo	caliza	ation
		ods to analyze and solve mobile robot problems.				
CO4	-	ze and evaluate different approaches for perception	, lo	calizat	tion,	and
		ing/navigation in mobile robotics.				
CO5	U U	n and develop solutions for mobile robot locomotion, perc	•		caliza	tion,
	and p	lanning/navigation using appropriate techniques and algori	thms	S.		

ih DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Dragomir N. Nenchev, Atsushi Konno, Teppei T sujita, "Humanoid Robots: Modelling and Control", Butterworth-Heinemann, 2018
- 2. Mohanta Jagadish Chandra, "Introduction to Mobile Robots Navigation", LAP Lambert Academic Publishing, 2015.
- 3. Peter Corke, "Robotics, Vision and Control", Springer, Third Edition, 2023.
- 4. Roland Siegwart and Illah R.Nourbakish, "Introduction to Autonomous Mobile Robots" MIT Press, Cambridge, 2016.
- 5. Ulrich Nehmzow, "Mobile Robotics: A Practical Introduction", Springer, 2003.
- 6. Xiao Qi Chen, Y.Q. Chen and J.G. Chase, "Mobile Robots State of the Art in Land, Sea, Air, and Collaborative Missions", Intec Press, 2022.

COs	POs									
COS	1	2	3	4	5	6				
1	1	1	1	1	1	1				
2	1	1	1	2	1	1				
3	1	1	1	2	2	1				
4	2	1	1	2	2	2				
5	2	1	2	2	2	2				
Avg	1.4	1	1.2	1.8	1.6	1.4				

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	03	ROBOT OPERATING SYSTEMS	L	Т	Ρ	С						
			3	0	0	3						
		JECTIVES:										
1.	applica											
2.	To gai URDF.	n hands-on experience in creating and modeling robots using	g CA	D to	ols a	and						
3.	To acc	uire skills in simulating and controlling robots in Gazebo and	V-RI	EP.								
4.	To uno Movelt	derstand mapping, navigation, and motion planning techniq	ues	usir	ng R	OS						
5.		bly theoretical knowledge to design and implement advanced re- reractions.	obot	ic be	ehavi	ors						
UNIT I	R	OS ESSENTIALS				9						
packag ROS M – start	ge C++ /laster- t with I	o ROS- Advantages and Disadvantages of ROS - ROS Fi , Python – ROS computation Graph – nodes, Messages, topics ROS Community- Basic programming and Syntax overview in ROS programming - Creating Environment - Services-Action ction with the Simulation environment	, ser C++	vice	s, ba ⊨Pytl	igs, 10n						
		UILD YOUR OWN ROBOT ENVIRONMENT				9						
Descri Robot and ac descrip	ption F Modell dding re ption us	or Robot Modelling – ROS Packages for robot modelling - ormat and Tags- Kinematics and Dynamics Library – Create ing using Unified Robot Description Format (URDF) -ROS p cal-world object representations to the simulation environment sing 7 DOF: joint number, name, type and angle limits – Xacro – creation of wheeled robot	e UR arar : _ C	CDF nete reat	Mod r sei e Ro	el - ver bot						
		MULATION ROBOTS IN ROS WITH GAZEBO				9						
transm ROS c	nission controlle oints –	tion - Gazebo –create simulation model at Gazebo- Adding tags, 3D vision sensor to Gazebo- Moving robot joints using F er interacts with Gazebo, interfacing state controller, simulation simulation of differential wheeled robot in Gazebo. OS WITH VREP	ROS	con	trolle	ers-						
Adding	g the R	nulti-platform robotic simulator - Simulating the robotic arm OS interface to V-REP joint - Simulating a differential wheelec 3D vision sensor										
UNIT V	V M	APPING, NAVIGATION AND MOTION PLANNING ROS WIT	ГН М	10V	EIT	9						
Move i poses, execut Planni MATL	it Instat , robot ting in ng, Pic AB - RC	tion - Generating the Self-Collision matrix, virtual joints, planni end effector - Movelt Architecture Diagram - Trajectory Gazebo - Planning scene overview diagram- Collision Che k and Place Behaviors using Industrial Robots with ROS Mo DS with Industrial	ng g from ckin veit	roup ۱ R\ g - – R	os, ro /iz (Mot OS v	GUI tion vith						
ΤΟΤΑ			45 P	ERI	ODS							
COUR		TCOMES:										
		tion of this course, the students will be able to:										
CO1	progra	advantages/disadvantages of ROS, understand ROS frame mming syntax.										
CO2		n ROS computation graph, URDF modeling, and kinematics/c										
CO3	Apply	ROS programming to create an environment, build robot mod										
CO4	,	ze integration of ROS with simulation platfor ng/navigation/motion planning techniques.	rms,									
	παρρι	ng/navigation/motion planning techniques.										

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Lentin Joseph, Jonathan Cacace, "Mastering ROS for Robotics Programming", Second Edition, Packt Publishing, 2018
- 2. Lentin Joseph, Aleena Johny, "Robot Operating System (ROS) for Absolute Beginners Robotics Programming Made Easy", Second Edition, Apress, 2022.
- 3. Lentin Joseph, "ROS Robotics Projects", Packt publishing, Second ediiton, 2019.

COs	POs										
COS	1	2	3	4	5	6					
1	1	1	2	2	1	2					
2	1	1	2	2	1	2					
3	2	1	2	1	1	2					
4	2	1	2	2	2	2					
5	3	1	2	3	3	3					
Avg	1.8	1	2	2	1.6	2.2					

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	04	MR3004HUMANOID ROBOTICSLTP300						
COUL		BJECTIVES:	3	0	0	3		
1.		apply research and investigative techniques to solve practic	cal r	orob	ome	in		
1.		natronics.	cai p		ems			
2.		lemonstrate effective technical communication skills through	tech	nica	l ror	ort		
۲.		ng and presentations.	10011	mea	i icp	Jon		
3.		evelop a comprehensive understanding of key concepts, me	thod	s 21	nd c	ore		
5.		ents of mechatronics.	linou	5, a				
4.		tilize modern tools and techniques to design intelligent mechatr	ronic	svst	ems			
5.		analyze and optimize engineering solutions using a med						
0.		oach.	nativ	011100	but			
UNIT		ITRODUCTION				9		
		evelopment of Humanoids, Human Likeness of a Humanoid Ro	obot	Tra	de-C	-		
		d Robot Design, Human-Friendly Humanoid Robot Design, c						
humai						•••		
		INEMATICS				9		
		tructure, forward and inverse kinematic problems, differential ki	inem	atics	, Tw	-		
		city, and Spatial Transform, Inverse Differential Kinematic Relat						
		at singular configurations- Gait Analysis						
UNIT		ZMP AND DYNAMICS				9		
ZMP (ew,2D Analysis,3D Analysis, Measurement of ZMP, General D	Discu	issio	n- Z	MP		
		t, ZMP for Both Feet Contact, Dynamics of Humanoid Robots, I						
		Ground Reaction Force, Momentum, Angular Momentum, Ang						
INIULIUI	i unu		Jaiai	IVIUI				
and Ir	nertia ⁻	Tensor of Rigid Body, Calculation of Robot's Center of Mass,	Link					
and Ir	nertia ar Velo		Link					
and Ir Angula UNIT	nertia [−] ar Velo IV I	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentue BIPED WALKING	Ĺink m	Spe	ed a	and 9		
and Ir Angula UNIT Two-D	nertia ⁻ ar Velo IV I Dimens	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum	Link m erted	Spe Per	ed a	and 9 um,		
and In Angula UNIT Two-D Behav	nertia ⁻ ar Velo IV I Dimens vior of	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve	Link m erted	Spe Per	ed a	and 9 um,		
and In Angula UNIT Two-D Behav	nertia ⁻ ar Velo IV I Dimens vior of e Bipe	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha	Link m erted	Spe Per	ed a	and 9 um,		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP	nertia ⁻ ar Velo IV I Dimens vior of e Bipe V I Basec	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION Walking Pattern Generation, Cart-Table Model, Off-Line V	Link m rted ange, Walk	Spe Per , Pla	eed a	and 9 um, g a 9 ern		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP	nertia ⁻ ar Velo IV I Dimens vior of e Bipe V I Basec	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION	Link m rted ange, Walk	Spe Per , Pla	eed a	and 9 um, g a 9 ern		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma	ar Velo IV I Dimense vior of Bipe V V Basecond ration, noid R	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m erted ange, Walk ontrol	Spe Per Pla	eed a ndulu nnin Patte Hor	and 9 um, g a 9 ern nda		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA	ar Velo IV I Dimens vior of Bipe V I Basec ration, noid R L	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m rted ange, Walk	Spe Per Pla	eed a ndulu nnin Patte Hor	and 9 um, g a 9 ern nda		
and Ir Angula Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF	ar Velo IV I Dimens vior of Basec ration, noid R L RSE O	Tensor of Rigid Body, Calculation of Robot's Center of Mass, ocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION 4 Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m erted ange, Walk ontrol	Spe Per Pla	eed a ndulu nnin Patte Hor	and 9 um, g a 9 ern nda		
and Ir Angula Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF	ar Velo IV I Dimense vior of Basece ration, noid R L SE O compl	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m erted ange, Walk ontrol	Spe Per , Pla ing I of	eed a ndulu nnin Patt Hor	and 9 um, g a 9 ern nda		
and Ir Angula Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF	ar Velo IV I Dimense V N Baseco ration, noid R L RSE O Compl Desco	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m erted ange, Walk ontrol	Spe Per , Pla ing I of	eed a ndulu nnin Patt Hor	and 9 um, g a 9 ern nda		
and Ir Angula Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUR Upon CO1	ar Velo IV I Dimense V I Basece ration, noid R L SE O compl Desce huma	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m erted ange, Walk ontrol 45 P	Spe Per , Pla ing I of ERIC	eed a ndulu nnin Patte Hor DDS	and 9 Jum, g a 9 ern nda of		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUR Upon	ar Velo IV I Dimens vior of Basec ration, noid R L RSE O compl Desc huma	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION 4 Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers 4 UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, ar	Link m erted ange, Walk ontrol 45 P	Spe Per , Pla ing I of ERIC	eed a ndulu nnin Patte Hor DDS	and 9 Jum, g a 9 ern nda of		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1	ar Velo IV I Dimense vior of Basece ration, noid R L Compl Desce huma Inter huma	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers	Link m erted ange, Walk ontrol 45 P gn tr	Spe Per , Pla ing I of ERIC	eed a ndulu nnin Patt Hor DDS -offs	and 9 um, g a 9 ern nda of in		
and Ir Angula Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUR Upon CO1	ar Velo IV I Dimensivitor of e Bipe V N Basecond ration, noid R L RSE O comple huma Interry huma	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, ar anoid robot systems. y kinematic principles to solve forward and inverse kinemati	Link m erted ange, Walk ontrol 45 P gn tr	Spe Per , Pla ing I of ERIC	eed a ndulu nnin Patt Hor DDS -offs	and 9 Jum, g a 9 ern nda of in		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUR Upon CO1 CO2	ar Velo IV I Dimensivitor of Basece ration, noid R Basece ration, noid R SE O compl huma Apply gene	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line M Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, an anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots.	Link m rted ange, Walk ontrol 45 P gn tr nd d	Spe Per , Pla ing l of ERIC	eed a ndulu nnin Patte Hor DDS	and 9 Jm, g a 9 ern nda of in and		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1	ar Velo IV I Dimens vior of e Bipe V I Basec ration, noid R L SSE O compl Desc huma Inter huma Appl gene Anal	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line M Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, an anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground	Link m rted ange, Walk ontrol 45 P gn tr nd d	Spe Per , Pla ing l of ERIC	eed a ndulu nnin Patte Hor DDS	and 9 Jm, g a 9 ern nda of in and		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3	ar Velo IV I Dimense vior of e Bipe V V Baseco ration, noid R L RSE O compl Desco huma Interp huma Apply gene Analy mom	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION 4 Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, ar anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground entum, and stability during bipedal locomotion.	Link m erted ange, Walk ontrol 45 P gn tr nd d ic pro	Spe Per , Pla i of ERIC iynal oble	eed a ndulu nnin Patt Hor DDS -offs mics ms a forc	and 9 Jum, g a 9 ern nda of in and es,		
and Ir Angula UNIT Two-D Behaw Simple UNIT ZMP Gener Huma TOTA COUR Upon CO1 CO2 CO3	ar Velo ar Velo IV I Dimense vior of e Bipe V I Baseco ration, noid R Baseco ration, noid R L XSE O Comple Auma Interred huma Apple geneen Anale mom	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION 4 Walking Pattern Generation, Cart-Table Model, Off-Line W Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, are anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground tentum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for humanoid to bo strategies for humanoid robots.	Link m erted ange, Walk ontrol 45 P gn tr nd d ic pro	Spe Per , Pla i of ERIC iynal oble	eed a ndulu nnin Patt Hor DDS -offs mics ms a forc	and 9 Jum, g a 9 ern nda of in and es,		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3 CO4	ar Velo IV I Dimensivitor of Basec ration, noid R Basec ration, noid R V SE O huma huma huma huma huma huma huma huma	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line M Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, an anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground tentum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for humanoid unce their stability and performance during walking	Link m erted ange, Walk ontrol 45 P gn tr nd d ic pro	Spe Per , Pla i of ERIC iynal oble	eed a ndulu nnin Patt Hor DDS -offs mics ms a forc	and 9 Jum, g a 9 ern nda of in and es,		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3 CO3 CO4 CO5 REFE	ar Velo IV I Dimensivitor of e Bipe V I Basect ration, noid R L SSE O huma Inter huma Apply gene Analy mom Desig enha RENC	Tensor of Rigid Body, Calculation of Robot's Center of Mass, bocity, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line M Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, ar anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground tentum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for hum ince their stability and performance during walking EES	Link m rted ange, Walk ontrol 45 P nd d ic pro	Spe Per , Pla ing l of ERIC id ro id ro	eed a ndulu nning Patte Hor DDS -offs mics ms a forc	and 9 Jm, g a 9 ern nda of in and es, 5 to		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3 CO3 CO4 CO5 REFE	ar Velo ar Velo IV I Dimense vior of e Bipe V N Baseco ration, noid R L RSE O comple Auma Interr huma Apple gene Anale mom Desig enha RENC Gos	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line M Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, an anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground tentum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for hum noce their stability and performance during walking ES wami, P. Vadakkepat (Eds.), "Humanoid Robotics: A Reference in the stability and performance during walking	Link m rted ange, Walk ontrol 45 P nd d ic pro	Spe Per , Pla ing l of ERIC id ro id ro	eed a ndulu nning Patte Hor DDS -offs mics ms a forc	and 9 Jm, g a 9 ern nda of in and es, 5 to		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3 CO3 CO4 CO5 REFE	ar Velo ar Velo IV I Dimense vior of e Bipe V I Baseco ration, noid R Baseco ration, noid R Baseco ration, noid R Baseco ration, noid R Compl huma Apply gene Analy mom Desig enha RENC Goss Neth	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, ar anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground entum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for humanoid reference their stability and performance during walking SES wami, P. Vadakkepat (Eds.), "Humanoid Robotics: A Reference herlands, Dordrecht, 2020.	Link m erted ange, Walk ontrol 45 P gn tr nd d ic pro d read mano ence	Spe Per Per Pla ing I of ERIC Ivna Ivna Ivna id rc	eed a ndulu nnin Patte Hor DDS -offs mics mics forc obots	and 9 Jum, g a 9 ern nda of in and es, s to ger,		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3 CO3 CO4 CO5	ar Velo ar Velo IV I Dimense vior of e Bipe V I Baseco ration, noid R Baseco ration, noid R Baseco ration, noid R Baseco ration, noid R Compl huma Apply gene Analy mom Desig enha RENC Goss Neth	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line M Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, an anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground tentum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for hum noce their stability and performance during walking ES wami, P. Vadakkepat (Eds.), "Humanoid Robotics: A Reference in the stability and performance during walking	Link m erted ange, Walk ontrol 45 P gn tr nd d ic pro d read mano ence	Spe Per Per Pla ing I of ERIC Ivna Ivna Ivna id rc	eed a ndulu nnin Patte Hor DDS -offs mics mics forc obots	and 9 Jum, g a 9 ern nda of in and es, s to ger,		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUR Upon CO1 CO2 CO3 CO3 CO4 CO5 REFE 1.	ar Velo ar Velo IV I Dimense vior of e Bipe V N Basecon ration, noid R L SE O huma Apply gene Analy mom Desig enha RENC Gos Neth J K.	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and design anoid robots. pret and summarize the concepts of kinematics, ZMP, ar anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground entum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for humanoid reference their stability and performance during walking SES wami, P. Vadakkepat (Eds.), "Humanoid Robotics: A Reference herlands, Dordrecht, 2020.	Link m erted ange, Walk ontrol 45 P gn tr nd d ic pro d read mano ence	Spe Per Per Pla ing I of ERIC Ivna Ivna Ivna id rc	eed a ndulu nnin Patte Hor DDS -offs mics mics forc obots	and 9 Jm, g a 9 ern nda of in and es, s to ger,		
and Ir Angula UNIT Two-D Behav Simple UNIT ZMP Gener Huma TOTA COUF Upon CO1 CO2 CO3 CO3 CO4 CO5 REFE 1. 2.	ar Velo ar Velo IV I Dimense vior of e Bipe V V Basecond ration, noid R Comple Descond huma Apple Goss Neth J K. Spr	Tensor of Rigid Body, Calculation of Robot's Center of Mass, botty, Calculation of Robot's Momentum and Angular Momentum BIPED WALKING sional Walking Pattern Generation, Two-Dimensional Inve Linear Inverted Pendulum, Orbital Energy, Support Leg Excha d Gait, Extension to a Walk on Uneven Terrain. WALKING PATTERN GENERATION d Walking Pattern Generation, Cart-Table Model, Off-Line V Stabilizer, Principles of Stabilizing Control, Stabilizing Co Robot, Advanced Stabilizers UTCOMES: etion of this course, the students will be able to: cribe the historical development, characteristics, and desig anoid robots. pret and summarize the concepts of kinematics, ZMP, ar anoid robot systems. y kinematic principles to solve forward and inverse kinemati erate walking patterns for humanoid robots. yze the dynamics of humanoid robots, including motion, ground tentum, and stability during bipedal locomotion. gn and develop advanced stabilizing control strategies for hum noce their stability and performance during walking ES wami, P. Vadakkepat (Eds.), "Humanoid Robotics: A Referen- terlands, Dordrecht, 2020. Harada, E. Yoshida, K. Yokoi (Eds.), "Motion Planning for Hum	Link m rted ange, Walk ontrol 45 P gn tr nd d ic pro d read mano ence	Spe Per , Pla ing l of ERIC id rc oble oble ction wid rc	eed a ndulu nning Patte Hor DDS -offs mics mics mics pobots pring Robo	and 9 Jum, g a 9 ern nda of in and es, s to ger, ts",		

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 4. Jean-Claude Latombe, "Robot Motion Planning", Kluwer Academy Publishers, 2004.
- 5. Dragomir N. Nenchev, Atsushi Konno, "Humanoid Robots Modeling and Control", Butterworth Heinemann, 2019
- 6. Shuuji K, Hirohisa H, Kensuke H, Kazuhito, Springer-Verlag GmbH"Introduction to Humanoid Robotics", Springer, London, 2022.
- 7. J. Craig, "Introduction to Robotics: Mechanics and Control", Fourth Edition, Pearson, 2022

<u> </u>			PO	S		
COs	1	2	3	4	5	6
1	1	1	1	1	1	1
2	1	1	1	1	2	2
3	1	1	1	1	1	1
4	1	1	1	1	2	2
5	1	1	1	2	2	2
Avg	1	1	1	1.2	1.6	1.6

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	05	MULTI AGENT ROBOTICS	L 3	Т 0	P 0	C 3
COUR	SE OF	BJECTIVES:	3	U	U	3
1.		derstand principles of collaborative and swarm robotics.				
2.		plore modular robot design and kinematics.				
3.		Idy naturally inspired collaboration and decision-making in rob	otics	\$		
4.		alyze reconfigurable robot control mechanisms.	01.00			
5.		ply knowledge to design and optimize robotic systems.				
UNIT		NTRODUCTION TO COBOTICS				9
		Robotics- Properties - Introduction to Modern Mobile Robots	: Sw	arm	Rob	ots,
		and Collaborative Robots, Mobile Robot Manipulators-Current				
UNIT	I S	WARM ROBOTICS				9
Introdu	uction,	mapping, kinematics and trajectory error compensation, s	state	tra	nsitio	ons,
collect	ive de	ecision making and methodologies, swarm robot scenar	rios-a	aggr	egat	ion,
cluste	ring dis	persion, pattern formation, sorting, flocking and collective motion	on, s	hep	herd	ing,
hetero	geneo	us swarms, Error Detection and Security.				
UNIT		IODULAR ROBOTICS				9
		igns - Modular Robot Representation -Modular Serial Rob				
		alibration for Modular Serial Robots- Modular Serial Robot Dyr	nami	cs -	Mod	ular
Paralle	el Robo	ot Kinematics				
		ATURALLY INSPIRED COLLABORATION				9
						9
			otivo	Ma	tion	-
Collec	tive D	ecision-Making. Group Decision Making in Animals, Colle				as
Collec Decisi	tive D on Pro	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur	n Me	odel	s, V	as oter
Collec Decisi Model	tive D on Pro , Majo	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr	n Mo od I	odel: Mod	s, Vo el, Is	as oter sing
Collec Decisi Model Model	tive D on Pro , Majo , Fibe	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur	n Mo od I	odel: Mod	s, Vo el, Is	as oter sing
Collec Decisi Model	tive D on Pro , Majo , Fibe	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr	n Mo od I	odel: Mode	s, Vo el, Is	as oter sing
Collec Decisi Model Model Contra	tive D on Pro , Majo , Fibe arians.	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So	n Mo od I	odel: Mode	s, Vo el, Is	as oter sing
Collec Decisi Model Model Contra	tive D on Prc , Majo , Fibe arians.	ecision-Making. Group Decision Making in Animals, Colle icess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS	n Me rod I ociop	odel Mode ohys	s, Ve el, Is ics	as oter sing and 9
Collec Decisi Model Model Contra UNIT V-Sha	tive D on Pro , Majo , Fibe arians. V R ped Fo	ecision-Making. Group Decision Making in Animals, Colle icess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS formation Control for Robotic Swarms Constrained by Field of V	n Me rod I ociop View	odel Mode ohys	s, Ve el, Is ics orma	as oter sing and 9 tion
Collec Decisi Model Model Contra UNIT V-Sha of reco	tive D on Pro , Majo , Fibe arians. v R ped Fo	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu	n Me rod I ociop View	odel Mode ohys	s, Vel, Is ics orma s - S	as oter sing and 9 tion Self-
Collec Decisi Model Model Contra UNIT V-Sha of reco Assen	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur nbly Mo	ecision-Making. Group Decision Making in Animals, Colle icess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS formation Control for Robotic Swarms Constrained by Field of V	n Me rod I ociop View	odel Mode ohys	s, Vel, Is ics orma s - S	as oter sing and 9 tion Self-
Collec Decisi Model Model Contra UNIT V-Sha of reco Assen Assmr	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur nbly Mo netry.	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics	n Me rod I ociop View Ilti-Ag s Err	odel Mode ohys – fo gent iergi	s, Ve el, Is ics orma s - S ng f	as oter sing and 9 tion Self- rom
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA	tive D on Pro , Majo , Fibe arians. v R ped Fo onfigur nbly Me metry. L	ecision-Making. Group Decision Making in Animals, Colle icess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So EECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics	n Me rod I ociop View	odel Mode ohys – fo gent iergi	s, Ve el, Is ics orma s - S ng f	as oter sing and 9 tion Self- rom
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur nbly Mo metry. L SE OL	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics	n Me rod I ociop View Ilti-Ag s Err	odel Mode ohys – fo gent iergi	s, Ve el, Is ics orma s - S ng f	as oter sing and 9 tion Self- rom
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur hbly Ma netry. L SE OL comple	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics JTCOMES: etion of this course, the students will be able to:	n Me rod I ociop View Ilti-Ag s Err 45 P	odel Mode ohys — fc gent hergi	s, Ve el, ls ics orma s - S ng f	as oter sing and 9 tion Self- rom
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur nbly M metry. L SE OL comple Recal	ecision-Making. Group Decision Making in Animals, Colle icess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics JTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative	n Me rod I ociop View Ilti-Ag s Err 45 P	odel Mode ohys — fc gent hergi	s, Ve el, ls ics orma s - S ng f	as oter sing and 9 tion Self- rom
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1	tive D on Pro , Majo , Fibel arians. V R ped Fo onfigur nbly M metry. L SE OL comple Recal roboti	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics JTCOMES: etion of this course, the students will be able to:	n Me rod I ociop View Iti-Ag s Em 45 P	odel: Model bhys – fc gent hergi ERI	s, Vi el, Is ics orma s - S ng f ODS	as oter sing and 9 tion Self- rom
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur hbly Mo netry. L SE OL comple Recal roboti Unde	ecision-Making. Group Decision Making in Animals, Colle icess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration.	n Me rod I ociop View Iti-Ag s Em 45 P	odel: Model bhys – fc gent hergi ERI	s, Vi el, Is ics orma s - S ng f ODS	as oter sing and 9 tion Self- rom
Collec Decisi Model Contra V-Sha of reco Assen Asymr TOTA COUR	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur nbly Mo netry. L SE OL comple Recal roboti Unde natura	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu	n Me rod I ociop View Ilti-Ag s Em 45 P robo	odel: Mode bhys - fc gent hergi ERI btics	s, Vi el, Is ics orma s - S ng f ODS	as oter sing and 9 tion Self- rom arm and
Collec Decisi Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur hbly M metry. L SE OL comple Recal roboti Unde natura Apply	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems.	n Me rod I ociop View Ilti-Ag s Em 45 P robo	odel: Mode bhys - fc gent hergi ERI btics	s, Vi el, Is ics orma s - S ng f ODS	as oter sing and 9 tion Self- rom s arm and
Collec Decisi Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1	tive D on Pro , Majo , Fibel arians. V R ped Fo onfigur nbly Me netry. L SE OL comple Recal roboti Unde natura Apply makir	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col	n Me rod I ociop View Iti-Ag s Em 45 P robo	odel: Model bhys - fc gent hergi ergi ergi btics obot	s, Vi el, Is ics orma s - S ng f ODS	as oter sing and 9 tion Self- rom arm and
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1 CO2 CO3	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur hbly Ma netry. L SE OL comple Recal roboti Unde natura Apply makir Analy	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col ag methodologies and scenarios for swarm robot applications.	n Me rod I ociop View Iti-Ag s Em 45 P robo	odel: Model bhys - fc gent hergi ergi ergi btics obot	s, Vi el, Is ics orma s - S ng f ODS	as oter sing and 9 tion Self- rom arm and
Collec Decisi Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1 CO2 CO2 CO3	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur hbly Mo netry. L SE OL Comple Recal roboti Unde natura Apply makir Analy syste	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, Sc ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col ag methodologies and scenarios for swarm robot applications. ze the kinematics, dynamics, and configuration options of r	n Me rod I ociop View Ilti-Ag s Em robo Iar ro Ilecti modu	odel: Mode bhys - fc gent hergi ERI btics obot	s, Vi el, Is ics orma s - S ng f ODS , swa ics, ecis	as oter sing and 9 tion Self- rom arm and otics
Collec Decisi Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1 CO2 CO2 CO3	tive D on Pro , Majo , Fibel arians. V R ped Fo onfigur hbly M metry. L SE OL comple Recal roboti Unde natura Apply makir Analy systel	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu odular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col ag methodologies and scenarios for swarm robot applications. ze the kinematics, dynamics, and configuration options of r ms for various applications.	n Me rod I ociop View Itti-Ag s Em 45 P robo Ilar ro Ilectir modu	odel: Model bhys - fc gent hergi ERI btics obot ve d	s, Vi el, Is ics orma s - S ng f ODS , swa ics, ecis	as oter sing and 9 tion self- rom arm and otics
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1 CO2 CO3 CO4 CO5	tive D on Pro , Majo , Fibel arians. V R ped Fo onfigur hbly M metry. L SE OL comple Recal roboti Unde natura Apply makir Analy systel	ecision-Making. Group Decision Making in Animals, Colle locess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, Sc ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu bodular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col og methodologies and scenarios for swarm robot applications. ze the kinematics, dynamics, and configuration options of r ms for various applications. ate the control mechanisms and emerging swarm dynamics of s, considering their formation control and self-assembly capab	n Me rod I ociop View Itti-Ag s Em 45 P robo Ilar ro Ilectir modu	odel: Model bhys - fc gent hergi ERI btics obot ve d	s, Vi el, Is ics orma s - S ng f ODS , swa ics, ecis	as oter sing and 9 tion Self- rom arm and otics
Collec Decisi Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1 CO2 CO3 CO3 CO4 CO5 REFE	tive D on Pro , Majo , Fibel arians. V R ped Fo onfigur nbly Ma metry. L SE OL comple Recal roboti Unde natura Apply makir Analy systel Evalu robots RENCI	ecision-Making. Group Decision Making in Animals, Colle locess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, Sc ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu bodular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col og methodologies and scenarios for swarm robot applications. ze the kinematics, dynamics, and configuration options of r ms for various applications. ate the control mechanisms and emerging swarm dynamics of s, considering their formation control and self-assembly capab	n Me rod I pociop View Ilti-Ag s Err 45 P robo Ilar re Ilectir modu	odel: Mode bhys - fc gent hergi btics - - btics - btics - - btics - - - - - - - - - - - - - - - - - - -	s, V(el, Is ics prma s - S ng f ODS , swa ics, ecis robc	as oter sing and 9 tion Self- rom arm and otics
Collec Decisi Model Contra Of reco Assen Asymm TOTA COUR Upon CO1 CO2 CO3 CO3 CO4 CO5 REFE 1. G	tive D on Pro , Majo , Fibe arians. V R ped Fo onfigur hbly Ma netry. L SE OU comple Recal roboti Unde natura Apply makir Analy syste Evalu robots RENCI	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, So ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu bodular Robot Platform Based on Sambot - Swarm Dynamics JTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col ag methodologies and scenarios for swarm robot applications. ze the kinematics, dynamics, and configuration options of r ms for various applications. ate the control mechanisms and emerging swarm dynamics of s, considering their formation control and self-assembly capab ES	n Me rod I ociop View Ilti-Ag s Em 45 P robo Ilar ro Ilecti modu of re- ilities	odel: Mode bhys - fc gent hergi ERI otics obot ve d ular conf 3.	s, V(el, Is ics prma s - S ng f ODS , swa ics, ecis robc	as oter sing and 9 tion Self- rom arm and otics
Collec Decisi Model Model Contra V-Sha of reco Assen Asymr TOTA COUR Upon CO1 CO2 CO2 CO3 CO4 CO4 CO5 REFE 1. G 2. G	tive D on Pro , Majo , Fibel arians. V F ped Fo onfigur hbly M metry. L SE OL comple Recal roboti Unde natura Apply makir Analy systel Evalu robots RENCI	ecision-Making. Group Decision Making in Animals, Colle cess, Models for Collective Decision-Making Processes, Ur rity Rule, Hegselmann and Krause, Kuramoto Model, Axelr r Bundle Model, Sznajd Model, Bass Diffusion Model, Sc ECONFIGURABLE ROBOTS ormation Control for Robotic Swarms Constrained by Field of V able virtual linkage - Reconfigurable Formation Control of Mu bodular Robot Platform Based on Sambot - Swarm Dynamics UTCOMES: etion of this course, the students will be able to: I the properties and challenges associated with collaborative cs, modular robotics, and naturally inspired collaboration. rstand the concepts and principles of swarm robotics, modu ally inspired collaboration in robotic systems. the knowledge of swarm robotics to analyze and design col ag methodologies and scenarios for swarm robot applications. ze the kinematics, dynamics, and configuration options of r ms for various applications. ate the control mechanisms and emerging swarm dynamics of s, considering their formation control and self-assembly capab ES ang, I-Ming Chen, "Modular Robots: Theory and Practice", Spi	n Me rod I pociop View Itti-Ag s Em 45 P robo lar ro lar ro lar ro lar ro robo	odel: Model bhys - fc gent hergi otics obot conf s. - - - - - - - - - - - - - - - - - -	s, Vi el, Is ics orma s - S ng f ODS , swa ics, ecis robc	as oter sing and tion Self- rom and otics

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COs			PO	S		
COS	1	2	3	4	5	6
1	1	1	2	1	-	1
2	1	1	2	2	1	1
3	1	1	2	2	2	1
4	1	1	2	2	3	2
5	1	1	2	3	3	2
Avg	1	1	2	2	2.25	1.4


DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	06	AUTOMOBILE ENGINEERING	L	Т	Ρ	С
			3	0	0	3
		BJECTIVES:				
1.		nderstand the construction and layout of different types of auto	mob	ile v	ehic	es,
_		ding chassis, frame, and body structures.				
2.		xplain the principles of vehicle aerodynamics and the various	resis	stand	ces a	and
•		ents involved in vehicle motion.				
3.		nalyze the components, functions, and materials used in inte		com	busi	lion
4		nes (IC engines) and the concept of variable valve timing (VVT		,		
4.		valuate and compare electronically controlled fuel injection syst				
-		diesel engines, including common rail direct injection and unit in	-			
5.		xamine the transmission systems in vehicles, including manua	al an	d au	itom	atic
		boxes, clutch types, and torque converters.				
		/EHICLE STRUCTURE AND ENGINES	,			9
		tomobiles vehicle construction and different layouts, chassis,				
		odynamics (various resistances and moments involved),	IC.	eng	gines	; —
		-functions and materials, variable valve timing (VVT).				
UNIT						9
		y controlled gasoline injection system for SI engines, Electron				
		on system (Unit injector system, Rotary distributor type and co				
		tem), Electronic ignition system (Transistorized coil ignition sy				
		nition system), Turbo chargers (WGT, VGT), Engine emission	COIII		y un	ee-
		converter system, Emission norms (Euro and BS).				9
		and construction, gear boxes- manual and automatic, gear sl	oift m	hoch	onici	
		ansfer box, fluid flywheel, torque converter, propeller shaft, slip				
		ential and rear axle, Hotchkiss Drive and Torque Tube Drive.	Join	ເs, u	nive	Sai
		STEERING, BRAKES AND SUSPENSION SYSTEMS				9
		ometry and types of steering gear box-Power Steering, Type	e of	Fro	nt A	-
		spension Systems, Pneumatic and Hydraulic Braking Systems,				
		S), electronic brake force distribution (EBD) and Traction Conti		UUK	Dian	ing
		ALTERNATIVE ENERGY SOURCES	01.			9
		ural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethance		asol		-
		Automobiles- Engine modifications required –Performance,				
		aracteristics of SI and CI engines with these alternate fuels - El				
		el Cell Note: Practical Training in dismantling and assembling				
		ission Systems should be given to the students.	, 01 5	-ngn	io pr	
TOTA			45 P	ERI	ODS	
		UTCOMES:				
		etion of this course, the students will be able to:				
CO1	Reca	Ill the different types of steering gearboxes, suspension systeems used in automobiles.	ms,	and	brak	ing
CO2	Unde	erstand the principles of vehicle aerodynamics and their im rmance and efficiency.	pact	on	veh	icle
CO3		/ the knowledge of engine auxiliary systems to analyze and o	diagr		enc	line
000		rmance issues and propose appropriate solutions.	alayı	1030	Chig	
CO4		/ze the functioning and performance of alternative ene	rav	5011	rces	in
004		nobiles, such as natural gas, biofuels, and electric/hybrid syste		300	1000	
CO5		late the impact of different transmission systems on vehic		orfor	mor	
005		· · · · ·				
	Inclu	ding their efficiency, gear shifting mechanisms, and power tran	วเษเ	cape	INIIU	CS.

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Jain K.K. and Asthana. R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.
- 2. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 13th Edition 2014.
- 3. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2015.
- 4. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 5. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- 6. Martin W, Stockel and Martin T Stockle , "Automotive Mechanics Fundamentals," The Good heart - Will Cox Company Inc, USA ,1978.
- 7. Newton, Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.

<u> </u>			PO	s		
COs	1	2	3	4	5	6
1	1	1	1	-	-	1
2	1	1	1	-	-	1
3	2	1	1	-	-	1
4	2	1	1	-	-	1
5	1	1	1	- A	-	1
Avg	1.4	1.	11/3	36-7/	-	1

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

AM335	51	ELECTRIC AND HYBRID VEHICLES	T	Ρ	С
		3	0	0	3
		ECTIVES:			
		aspects of Electric and Hybrid Vehicles (EHV), including a	archite	ctures	5,
		g, sizing, sub-system design and hybrid vehicle control.			
		and about vehicle dynamics,			
3.	Design	he required energy storage devices,			
4.	Select t	ne suitable electric propulsion systems and			
5.	Underst	and of hybrid electric vehicles.			
		NEED FOR ALTERNATIVE SYSTEM			9
		I and electric vehicles – main components and working prii			
and ele	ectric ve	hicles, Different configurations of hybrid and electric vehic	les. C	ompa	rative
study o	of diesel	, petrol, hybrid and electric Vehicles. Advantages and Lin	nitatior	ns of h	nybric
and ele	ectric Ve	hicles. Case study on specification of electric and hybrid v	ehicles	S.	
UNIT I		DESIGN CONSIDERATIONS FOR ELECTRIC VEHICL	ES		9
Desiar	n require	ment for electric vehicles- Range, maximum velocity, ac	celera	tion, r	oowe
		hass of the vehicle. Various Resistance- Transmission e			
		and Body Design, Electric Vehicle Recharging and Refue			
					•
	11	ENERGY STORAGE DEVICES AND SOURCES			9
Dattory	/ Param	eters Different types of batteries Battery Chemistry F	Ratterv	Mode	
		eters Different types of batteries. Battery Chemistry, E			
Battery	/ Manag	ement System, Thermal Management system. Ultra-capa	acitors	. Fuel	
Battery	/ Manag		acitors	. Fuel	
Battery Charao	y Manag cteristics	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che	acitors	. Fuel	Cell
Battery Charac	/ Manag cteristics V	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS	acitors emistry	. Fuel ⁄.	Cell
Battery Charac UNIT I Types	y Manag cteristics V of Moto	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3-	acitors emistry phase	. Fuel /. moto	Cell 9
Battery Charac UNIT I Types motors	y Manag cteristics V of Moto s, switche	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers,	acitors emistry phase	. Fuel /. moto	Cell
Battery Charac UNIT I Types motors	y Manag cteristics V of Moto s, switche	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3-	acitors emistry phase	. Fuel /. moto	Cell 9
Battery Charac UNIT I Types motors Regen	y Manag cteristics V of Moto s, switche erative E	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters.	acitors emistry phase Torque	. Fuel /. moto	Cell
Battery Charac UNIT I Types motors Regen	V Manag cteristics V of Moto s, switche erative E	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES	acitors emistry phase Torque	. Fuel 7. moto Vect	Cell 9 r, PM oring 9
Battery Charac UNIT I Types motors Regen UNIT V Power	v Manag cteristics v of Moto s, switche erative E v Split de	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra	acitors emistry phase Torque	. Fuel 7. moto Vect	Cell 9 r, PM oring 9
Battery Charac UNIT I Types motors Regen UNIT V Power	v Manag cteristics v of Moto s, switche erative E v Split de	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles.	acitors emistry phase Torque	. Fuel moto Vect s for F	Cell 9 r, PM oring 9 Hybric
Battery Charac UNIT I Types motors Regen UNIT V Power	v Manag cteristics v of Moto s, switche erative E v Split de	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra	acitors emistry phase Torque	. Fuel 7. moto Vect	Cell 9 r, PM oring 9 Hybric
Battery Charac Types motors Regen UNIT V Power and Ele	y Manag cteristics of Moto s, switche erative E / Split de ectric Ve	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles.	acitors emistry phase Torque	. Fuel moto Vect s for F	Cell 9 r, PM oring 9 Hybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele	y Manag cteristics of Moto s, switche erative E / Split de ectric Ve	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES:	acitors emistry phase Torque ategies : 45	. Fuel 	Cell 9 r, PM oring 9 lybric
Battery Charac Types motors Regen UNIT V Power and Ele COUR	 Manag cteristics of Moto switche erative E Split de ectric Ve SE OUT Underst 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid	acitors emistry phase Torque ategies : 45	. Fuel 	Cell 9 r, PM oring 9 lybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR	 Manag cteristics V of Moto s, switche erative E / Split de ectric Ve SE OUT Underst vehicles 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stru- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid	acitors emistry phase Torque ategies : 45 and el	Fuel moto Vect for F	Cell 9 r, PM oring 9 lybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2	 Manag cteristics of Moto switche erative E Split de ectric Ve SE OUT Underst vehicles Design 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid	acitors emistry phase Torque ategies : 45 and el	Fuel moto Vect for F	Cell 9 r, PN oring 9 1ybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3	 Manage cteristics V of Moto switche erative E / Split de ectric Ve SE OUT Underst vehicles Design Choose 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications	acitors emistry phase Torque ategies : 45 and el electric	Fuel moto Vect for F ectric	Cell 9 r, PN oring 9 1ybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4	 Manag cteristics Manag cteristics of Moto switche erative E switche erative E Split de ectric Ve SE OUT Underst vehicles Design Choose Choose 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hybrid	acitors emistry phase Torque ategies : 45 and el electric	Fuel moto Vect for F ectric	Cell 9 r, PM oring 9 lybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO3 CO4	 Manag cteristics V of Moto switche erative E / Split de ectric Ve SE OUT Underst vehicles Design Choose dependi 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hybrid ng on resources	acitors emistry phase Torque ategies : 45 and el electric rid veh	Fuel moto Vect for F ectric vehic	Cell 9 r, PM oring 9 Jybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO3 CO4	 Manag cteristics V of Moto switche erative E / Split de ectric Ve SE OUT Underst vehicles Design Choose dependi 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hybrid	acitors emistry phase Torque ategies : 45 and el electric rid veh	Fuel moto Vect for F ectric vehic	Cell 9 r, PN oring 9 lybric IODS
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO5	 Manag cteristics of Moto switche erative E systiche getric Ve Split de ectric Ve SE OUT Underst vehicles Design Choose dependi Underst 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hybrid ng on resources	acitors emistry phase Torque ategies : 45 and el electric rid veh	Fuel moto Vect for F ectric vehic	Cell 9 r, PM oring 9 Jybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO5	 Manag cteristics of Moto switche erative E systiche getric Ve Split de ectric Ve SE OUT Underst vehicles Design Choose dependi Underst 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hyb ng on resources and basic operation of power-split device and control Stra-	acitors emistry phase Torque ategies : 45 and el electric rid veh	Fuel moto Vect for F ectric vehic	Cell 9 r, PM oring 9 Jybric
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO5	 Manag cteristics of Moto switche erative E systiche getric Ve Split de ectric Ve SE OUT Underst vehicles Design Choose dependi Underst 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hyb ng on resources and basic operation of power-split device and control Stra- ctric vehicle.	acitors emistry phase Torque ategies : 45 and el electric rid veh	Fuel moto Vect for F ectric vehic	Cell 9 r, PN oring 9 lybric IODS
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO5 CO5	 Manag cteristics of Moto switche erative E switche erative E Split de ectric Ve SE OUT Underst vehicles Design 2 Choose dependi Underst and elec BOOKS 	ement System, Thermal Management system. Ultra-capa- Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hyb ng on resources and basic operation of power-split device and control Stra- tric vehicle.	acitors emistry phase Torque ategies and el electric rid veh	Fuel moto Vect for F F F F F F F F F F F F F F F F F F F	Cell 9 r, PN oring 9 1ybric 10DS
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO3 CO4 CO5 TEXT I 1. Ja	 Manag cteristics of Moto switche erative E Split de ectric Ve SE OUT Underst vehicles Design Choose dependi Underst and elec BOOKS mes Lar 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Cha MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hybrid ng on resources and basic operation of power-split device and control Stra- tric vehicle.	acitors emistry phase Torque ategies and el electric rid veh	Fuel moto Vect for F F F F F F F F F F F F F F F F F F F	Cell 9 r, PN oring 9 tybric IODS
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO3 CO4 CO5 TEXT I 1. Ja &	 Manag cteristics of Moto switche erative E Split de ectric Ve SE OUT Underst vehicles Design Choose dependi Underst and eleo BOOKS mes Lar Sons,20 	ement System, Thermal Management system. Ultra-capa- Fuel cell types- Electrolytic reactions of fuel cell. Cell Cha MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hyb ng on resources and basic operation of power-split device and control Stratectric vehicle.	acitors emistry phase Torque ategies : 45 and el electric rid veh regies	Fuel moto Vect for H ectric vehiu icle for hy	Cell 9 r, PN oring 9 tybric IODS cles. brid Wiley
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO3 CO4 CO5 TEXT I 1. Ja & 1 2. Iql	 Manag cteristics of Moto switche erative E Split de ectric Ve SE OUT Underst vehicles Design 2 Choose dependi Underst and elec BOOKS mes Lar Sons,20 bal Husa 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hybrid ng on resources and basic operation of power-split device and control Strat- ctric vehicle.	acitors emistry phase Torque ategies : 45 and el electric rid veh regies ined ".	Fuel moto Vect for H ectric c vehic icle for hy John V ress,2	Cell 9 r, PN oring 9 tybric IODS cles. brid Wiley
Battery Charac UNIT I Types motors Regen UNIT V Power and Ele COUR CO1 CO2 CO3 CO4 CO3 CO4 CO5 TEXT I 1. Ja & 2. Iqt 3. Me	 Manag cteristics of Moto switche erative E Split de ectric Ve SE OUT Underst vehicles Design 2 Choose dependi Underst and elec BOOKS mes Lar Sons,20 bal Husa 	ement System, Thermal Management system. Ultra-capa - Fuel cell types- Electrolytic reactions of fuel cell. Cell Che MOTORS AND CONTROLLERS rs, Characteristic of DC motors, AC single phase and 3- ed reluctance motors, Motor Drives and speed controllers, Braking. Rectifiers, Inverters, DC/DC converters. SUBSYTEMS OF HYBRID AND ELECTRIC VEHICLES vices for Hybrid Vehicles - Operation modes - Control Stra- hicle- Economy of hybrid Vehicles. TOTAL COMES: and need and working of different configurations of hybrid and develop basic systems of electric vehicles and hybrid proper energy storage systems for EV applications a suitable drive system for developing an electric and hyb ng on resources and basic operation of power-split device and control Strat- stric vehicle. minie and John Lowry, "Electric Vehicle Technology Expla- 03 in, "Electric and Hybrid Vehicles-Design Fundamentals", C shsani, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles-	acitors emistry phase Torque ategies : 45 and el electric rid veh regies ined ".	Fuel moto Vect for F F F F F F F F F F F F F F F F F F F	Cell 9 r, PN oring 9 tybric IODS cles. brid Wiley

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Ron Hodkinson, "Light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication,2005
- 2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications, 2005

COs			P	Ds				PSOs	
COS	1	2	3	4	5	6	1	2	3
1	3	3	3	3	3	3	3	3	2
2	3	3	3	3	3	3	3	3	2
3	3	3	3	3	3	3	3	3	2
4	3	3	3	3	3	3	3	3	2
5	3	3	3	3	3	3	3	3	2
AVG	3	3	3	3	3	3	3	3	2

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	007	VETRONICS	L	Т	Ρ	С
			3	0	0	3
		BJECTIVES:				
		duce the architecture, sub-systems of car and engines ty	pes a	ind its	tunc	tions
	of autor	iliar the elements and functions of manual and auto	moti	tron	omio	aian
		sion and steering systems	mau	; tran	ISINIS	SION,
		erstand functions of safety and diagnostic system and to	n fam	iliar t	ho ro	la of
		ommunication protocols and modern automotive.	Jian	ιπαιι		
		erstand integration of various subsystem in aerial vehicles				
		eciate the integration of various subsystems in aerial vehicles				
		RODUCTION TO AUTOMOTIVE AND ENGINE CONTR				9
		omobile - Architecture of Automobile - Car, Types of Sul		stem i	n Ca	r and
		, Chassis, Classification Engine – Types – Modern Engin				
		ed Engines - Components of Electronic Engine Managem				
Functi	ons - N	lodes, Fuel Delivery Systems - MPFI, CRDI - Ignition Sys	tems	, Diag	nost	ics.
		ANSMISSION, SUSPENSION, STEERING SYSTEMS				9
		s Systems – Sub Systems, Manual, Automatic - Suspe				
		onventional, Semi Active and Active - Steering System				
		Brake Systems - ABS - Stability - Emission Control Ma	anage	ement	– H	ybrid
		- Autonomous Cruise Control.				
		SAFETY SYSTEMS AND ECU	<u></u>		ام ما ا	9
		ms - Airbag - Automatic Door and Mirror - Parking Assist S				
		Telematics, Automatic Navigation - Dashboard - Diagnos ation Protocols - Cloud Connected Car – Level 4, Le				
	omous		ever (Aut	omat	- 1101
		AIRCRAFT MECHATRONICS				9
		s - Components of an Airplane and their Functions - N	Action	ns of	a Pla	-
		ation – Sensors - Gyroscope- Principles, Gyro Equations				
•	alion	and Free Gyro, Vertical and Directional Gyros,	Lase	r Gy	rosco	opes,
Accele		and Free Gyro, Vertical and Directional Gyros, ers. Direct Reading Compass, Types of Actuation Syste				
Linear	eromete Actua	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo	ms-L op Ar	inear nalysis	and Act	Non- uator
Linear Desigr	eromete [.] Actua n - Te	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment	ms-L op Ar 's fo	inear nalysis r Ser	and Actions	Non- uator and
Linear Desigr Actuat	eromet [,] Actua n - Te tion Sy	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper	ms-L op Ar 's fo ature	inear nalysis r Ser Fuel	and Actu Isors Qua	Non- uator and ntity,
Linear Desigr Actuat RPM,	eromete Actua n - Te tion Sy Torque	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required	ms-L op Ar 's fo ature ment	inear nalysis r Ser Fuel for M	and Actu Isors Qua ilitary	Non- uator and intity, v and
Linear Desigr Actuat RPM, Civil S	eromete Actua n - Te tion Sy Torque Standar	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Require ds. Satellite Navigation - GPS -System Description -Basic	ms-L op Ar 's fo ature ment	inear nalysis r Ser Fuel for M	and Actu Isors Qua ilitary	Non- uator and intity, v and
Linear Desigr Actuat RPM, Civil S and Ve	eromete Actua n - Te tion Sy Torque Standar elocity	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Require ds. Satellite Navigation - GPS -System Description -Basic Determination	ms-L op Ar 's fo ature ment	inear nalysis r Ser Fuel for M	and Actu Isors Qua ilitary	Non- uator and intity, and sition
Linear Desigr Actuat RPM, Civil S and Ve UNIT	eromete · Actua n - Te tion Sy Torque standar elocity V	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Require ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS	ms-L op Ar 's fo ature ment c Prin	inear halysis r Ser Fuel for M ciples	and s Actions sors Qua ilitary s -Pos	Non- uator and intity, and sition
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics	eromete · Actua n - Te tion Sy Torque Standar elocity V S of Ma	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Require ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines	ms-L op Ar 's fo ature ment c Prin	inear nalysis r Ser Fuel for M ciples	and s Actu sors Qua ilitary s -Pos	Non- uator and intity, and sition 9 iable
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya	erometa Actua n - Te tion Sy Torque Standar elocity V S of Ma ancy Sy	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Requirer ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes	and s Actures Qua ilitary s -Pos - Var - Var	Non- uator and intity, and sition 9 iable arine
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri	erometa Actua n - Te tion Sy Torque Standar elocity V s of Ma incy Sy ical – I	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Require ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communication	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes	and s Actures Qua ilitary s -Pos - Var - Var	Non- uator and intity, and sition 9 iable arine
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit	erometa Actua n - Te tion Sy Torque Standar elocity elocity V S of Ma s of Ma incy Sy ical – I ty and	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Requirer ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes dders and N	and s Actu isors Qua ilitary s -Pos - Var - M aviga	Non- uator and intity, and sition 9 iable arine ation-
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA	erometa Actua n - Te tion Sy Torque Standar elocity V s of Ma ancy Sy ical – F ty and L	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Requirer ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes dders and N	and s Actures Qua ilitary s -Pos - Var - Var	Non- uator and intity, and sition 9 iable arine ation-
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA COUR	erometa Actua n - Te tion Sy Torque Standar elocity V S of Ma ancy Sy ical – F ty and L RSE OL	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Requirer ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes dders and N	and s Actu isors Qua ilitary s -Pos - Var - M aviga	Non- uator and intity, and sition 9 iable arine ation-
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA Upon o	eromete Actua n - Te tion Sy Torque tandar elocity V s of Ma s	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Requirer ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes dders and N	and s Actions Qua ilitary s -Pos - Var - Ma aviga	Non- uator and intity, and sition 9 riable arine ation- DDS
Linear Design Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA COUR	eromete Actua n - Te tion Sy Torque Standar elocity V Standar elocity V Standar elocity V Standar elocity V Standar elocity V Standar standar elocity V Standar Standar elocity V Standar Standar Elocity Standar Standar Elocity Standar Stan	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru	inear nalysis r Ser Fuel for M ciples /pes dders and N	and s Actions Qua ilitary s -Pos - Var - Ma aviga	Non- uator and intity, and sition 9 iable arine ation- DDS
Linear Design Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA Upon o	erometa Actua n - Te tion Sy Torque Standar elocity V Standar V Standar V Standar V Standar St	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines systems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru tion a	inear halysis r Ser Fuel for M ciples /pes dders and N	and s Acturns Qua ilitary s -Pos - Var - M aviga PERIC	Non- uator and intity, and sition 9 iable arine ation- DDS
Linear Design Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA COUR Upon o CO1	eromete Actua n - Te tion Sy Torque Standar elocity V s of Ma ancy Sy ical – I ty and L SE OL comple and n Apply	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Requirer ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru tion a	inear halysis r Ser Fuel for M ciples /pes dders and N	and s Acturns Qua ilitary s -Pos - Var - M aviga PERIC	Non- uator and intity, and sition 9 iable arine ation- DDS
Linear Design Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA COUR Upon o CO1	Actua n - Te tion Sy Torque Standar elocity V S of Ma ncy Sy ical – I ty and L SE OL comple Apply optim Evalu	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper a, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water. TTCOMES: tion of this course, the students will be able to: ibe the key components and integration of subsystems in a marine systems. principles of transmission, suspension, and steering sys ze vehicle performance and control. ate and assess safety systems and ECUs to ensure of	ms-L op Ar 's fo ature ment c Prin - Ty - Ru tion a	inear nalysis r Ser Fuel for M ciples /pes dders and N 45 F nobile to an	and s Acturns Qua ilitary s -Pos - Var - Ma aviga PERIO s, air alyze	Non- uator and ntity, and sition 9 riable arine ation- DDS craft, and
Linear Design Actuat RPM, Civil S and Ve UNIT V Basics Buoya Electri Stabilit TOTA COUR Upon C CO1 CO2 CO3	eromete Actua n - Te tion Sy Torque Standar elocity V S of Ma ncy Sy ical – I ty and L SE OL Comple Desci and n Apply optim Evalu opera	ers. Direct Reading Compass, Types of Actuation Syste tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water. TCOMES: tion of this course, the students will be able to: ibe the key components and integration of subsystems in a narine systems. principles of transmission, suspension, and steering sys ze vehicle performance and control. ate and assess safety systems and ECUs to ensure e tion in automotive applications.	ms-L pp Ar 's fo ature ment c Prin - Ty - Ru tion a auton	inear halysis r Ser Fuel for M ciples /pes dders and N 45 F hobile to an	and s Acturns Qua ilitary s -Pos - Var - M aviga PERIC s, air alyze	Non- uator and intity, and sition 9 iable arine ation- DDS craft, and iable
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA COUR Upon o CO1	eromete Actua n - Te tion Sy Torque tandar elocity V s of Ma ncy Sy ical – I ty and L SE OL comple and n Apply optim Evalu opera Analy	ers. Direct Reading Compass, Types of Actuation Systems tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water. TCOMES: tion of this course, the students will be able to: ibe the key components and integration of subsystems in a narine systems. principles of transmission, suspension, and steering sys ze vehicle performance and control. ate and assess safety systems and ECUs to ensure en- tion in automotive applications. ze and interpret the functioning of aircraft mechatronic systems.	ms-L pp Ar 's fo ature ment c Prin - Ty - Ru tion a auton	inear halysis r Ser Fuel for M ciples /pes dders and N 45 F hobile to an	and s Acturns Qua ilitary s -Pos - Var - M aviga PERIC s, air alyze	Non- uator and intity, and sition 9 iable arine ation- DDS craft, and iable
Linear Desigr Actuat RPM, Civil S and Ve UNIT V Basics Buoya Electri Stabilit TOTA COUR Upon o CO1 CO2 CO3 CO4	Actua n - Te tion Sy Torque tandar elocity V s of Ma incy Sy ical – I ty and Comple SE OU comple Analy optim Evalu opera Analy stabili	ers. Direct Reading Compass, Types of Actuation Systems tion System, Modelling of Actuation Systems, Servo-Loc sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water. Ition of this course, the students will be able to: ibe the key components and integration of subsystems in a narine systems. principles of transmission, suspension, and steering sys ze vehicle performance and control. ate and assess safety systems and ECUs to ensure et tion in automotive applications. ze and interpret the functioning of aircraft mechatronic systems ty, and control.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru tion a auton tems	inear nalysis r Ser Fuel for M ciples /pes dders and N 45 F nobile to an nt an	and s Actions Qua ilitary s -Pos - Var - Ma aviga PERIO s, air alyze ad rel aviga	Non- uator and ntity, and sition 9 riable arine ation- DDS craft, and iable
Linear Desigr Actuat RPM, Civil S and Ve UNIT Basics Buoya Electri Stabilit TOTA COUR Upon o CO1 CO2 CO3	eromete Actua n - Te tion Sy Torque Standar elocity V S of Ma incy Sy ical – I ty and L SE OL comple Apply optim Evalu opera Analy stabili Exhib	ers. Direct Reading Compass, Types of Actuation Systems tion System, Modelling of Actuation Systems, Servo-Loo sting Methodologies, Performance Testing Equipment stems. Measurement and Control of Pressure, Temper e, Engine Vibration and Power. Electrical Power Required ds. Satellite Navigation - GPS -System Description -Basic Determination MARINE MECHATRONIC SYSTEMS arine Engineering – Architecture of Ships, Submarines stems - AUV - ROV - Propulsion Systems - Thrusters Power Generation - Lighting – Ventilation - Communicat Control in Water. TCOMES: tion of this course, the students will be able to: ibe the key components and integration of subsystems in a narine systems. principles of transmission, suspension, and steering sys ze vehicle performance and control. ate and assess safety systems and ECUs to ensure en- tion in automotive applications. ze and interpret the functioning of aircraft mechatronic systems.	ms-L op Ar 's fo ature ment c Prin - Ty - Ru tion a auton tems	inear nalysis r Ser Fuel for M ciples /pes dders and N 45 F nobile to an nt an	and s Actions Qua ilitary s -Pos - Var - Ma aviga PERIO s, air alyze ad rel aviga	Non- uator and ntity, and sition 9 riable arine ation- DDS craft, and iable

the P. DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Jurgen R.K, "Automotive Electronics Handbook", McGraw Hill, 1999.
- 2. Robert N Brady, "Automotive Computers and Digital Instrumentation", Prentice Hall, 2000.
- 3. William B.Ribbens, "Understanding Automotive Electronics", Butterworth, Heinemann Wobum, 2003.
- 4. D.A Taylor, "Introduction to Marine Engineering", Elsevier, Butterworth Heinemann Publication, 2014.
- 5. Asgeir.J Sorensen, "Report: Marine Control System", Norwegian University of Science and Technology, 2013.
- 6. D.A. Taylor, "Marine Control Practice", Butterworth & Co (Publishers) Ltd., London, 1987.
- 7. Leslie Jackson, "Instrumentation and Control Systems", Thomas Reed Publication Ltd., London, 2013.
- 8. Robert C. Nelson, "Flight Stability and Automatic Control", McGraw-Hill, Inc, 1998.
- 9. Jane's," Unmanned Aerial Vehicles and Targets", 1999.

<u> </u>			POs	5		
COs	1	2	3	4	5	6
1	1	1	2	2	1	2
2	3	1	2	2	1	2
3	3	11	2	2	1	2
4	2		2	2	2	2
5	2	1	2	2	1	2
Avg	2.2	1	2	2	1.2	2

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

N	IR3008	SMART MOBILITY AND INTELLIGENT VEHICLES	L	Т	Ρ	С
			3	0	0	3
COL	JRSE OBJ					
1.		stand the concept of automated, connected, and intellige ce in the automotive industry.	ent ve	hicles	s and t	their
2.	To gain kr	nowledge about various sensor technologies used in sm	nart m	nobility	/ and t	their
	applicatio	ns in vehicle systems.		-		
3.		e the principles and theories behind connected auton	iomol	us vel	nicles	and
	their conti	ol systems.				
4.		wireless technology and networking concepts cation and autonomy.	releva	ant t	o veł	nicle
5.		ne the technology and applications of connected ca	ars ai	nd au	tonom	าดบร
•.		ncluding the associated ethical, legal, technical, and se				
UNI	TI INTR	ODUCTION TO AUTOMATED, CONNECTED, AND CLES				
Con		omotive Electronics, Electronics Overview, History & Ev	olutio	n. Info	otainm	ient.
		, and Powertrain Electronics, Introduction to Automat				
		cles. Case studies: Automated, Connected, and Intellig				
UNI		ISOR TECHNOLOGY FOR SMART MOBILITY			-	9
		lar Technology and Systems, Ultrasonic Sonar Sys	stems	. Lida	ar Se	nsor
		d Systems, Camera Technology, Night Vision Techno				
		Data Fusion, Integration of Sensor Data to On-Board C				,
UNI		NECTED AUTONOMOUS VEHICLE				9
-		System Theory applied to Automobiles, Overview of the	One	ration	of FC	
		hysical System Theory and Autonomous Vehicles, R				
		ms and Autonomy, Role of Wireless Data Networks and				ingo
		ICLE WIRELESS TECHNOLOGY &NETWORKING	. / \u	Jiloni		9
		m Block Diagram and Overview of Components, Trar	emie	sion (Sveton	
		coding, Receiver System Concepts- Demodulation				
		d Applications to Vehicle Autonomy, Basics of Compu		U .		
Inte	rnet of Thir	igs, Wireless Networking Fundamentals, Integration of Vehicle Networks				
UNI		NECTED CAR & AUTONOMOUS VEHICLE TECHNO		Y		9
		Fundamentals, Navigation and Other Applications			to_\/ol	
	-	and Applications, Vehicle-to-Roadside and Vel				
	0,	utonomous Vehicles - Driverless Car Technology, Mor				
		cal Issues, Security Issues	а, с	yai, i	Voaub	IUUK
TOT			-	15 0	PERIC	פחו
		COMES		431		03
		on of this course, the students will be able to:				
CO 1		and explain the key concepts and components of autom	otod	conn	octod	and
	intellige	nt vehicles.				
CO2	applicat					
CO3	vehicles					-
CO4	vehicles					
COS		the challenges and ethical considerations associated nous vehicle technology.	with	conn	ected	and

Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. "Intelligent Transportation Systems and Connected and Automated Vehicles", 2016, Transportation Research Board
- 2. Radovan Miucic, "Connected Vehicles: Intelligent Transportation Systems", 2019, Springer
- 3. Tom Denton, "Automobile Electrical and Electronic systems, Roult edge", Taylor & Francis Group, 5th Edition, 2018.

COs			PO	s		
COS	1	2	3	4	5	6
1	1	1	1	3	1	2
2	1	1	2	3	2	2
3	1	1	3	3	2	2
4	1	1	2	3	2	2
5	1	1	2	3	3	3
Avg	1	1	2	3	2	2.2

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	09	ADVANCED DRIVER ASSISTANCE SYSTEMS	L	Т	Ρ	С
			3	0	0	3
		BJECTIVES:				
1.		iderstand automotive systems, components, and safety p		ols.		
2.		alyze and interpret data from various automotive sensors	S.			
3.		egrate ADAS technology into vehicle electronics.				
4.		aluate and apply advanced driver assistance systems.				
5.		sign innovative automotive display and warning technolo	gies.			
UNIT		TOMOTIVE FUNDAMENTALS				9
		m-Running System-Comfort System- Engine Component				
•		system, ABS, Steering System, ADAS standards, reg	ulatio	ns, a	nd sa	fety
protoc						-1
UNIT		TOMOTIVE SENSORS				9
		rs, oxygen sensors, crankshaft angular position sensor,				
		, Pressure sensor, Mass air flow sensor, Manifold Absolut				
		r, Coolant level sensors, Brake fluid level sensors				,
		s, advantage and their applications. Radar, Ultrasonic S	onar	Syste	ms, L	idar
Senso	or Tech	nology and Systems, Camera				
UNIT		VERVIEW OF DRIVER ASSISTANCE TECHNOLOGY	la .a I		a \/-!	9
		eory of Operation, Applications, Integration of ADAS Tec		0,		
		System Examples, Role of Sensor Data Fusion.	venic	le Pr	ognos	STICS
Techn						
		DVANCED DRIVER ASSISTANCE SYSTEMS				9
Δdvan				<u> </u>		
		river Assistance Systems - Lane Departure (LDW), A				
(ACC)	, Blind	Spot Detection, Parking Assist, Autonomous Emergency	Brakiı	ng (AE	EB), N	ight
(ACC) Vision	, Blind , Traffi	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant	Brakiı (IHC)	ng (AE), Tire	EB), N Press	ight sure
(ACC) Vision Monito	, Blind , Traffio pring (Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron	Brakii (IHC) it Veh	ng (AB), Tire hicle [EB), N Press Depar	ight sure ture
(ACC) Vision Monito Warnii	, Blind , Traffio pring (⁻ ng (FV	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection,	Brakii (IHC) it Veh	ng (AB), Tire hicle [EB), N Press Depar	ight sure ture
(ACC) Vision Monito Warnii Rear (, Blind , Traffio pring (ng (FV <u>Cross 1</u>	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic	Brakii (IHC) it Veh	ng (AB), Tire hicle [EB), N Press Depar	ight sure ture trol,
(ACC) Vision Monito Warnii Rear (UNIT)	, Blind , Traffio oring ([*] ng (FV <u>Cross 1</u> V A	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY	Brakiı (IHC) it Veh Hill D	ng (Al), Tire hicle [Decen	EB), N Press Depar t Con	ight sure ture trol, 9
(ACC) Vision Monito Warnin Rear (UNIT) Cente	, Blind , Traffic oring ([†] ng (FV Cross [†] V A r Cons	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up	Brakii (IHC) it Veh Hill D Displ	ng (AB), Tire hicle I Decen ay Te	EB), N Press Depar t Con	ight sure ture trol, 9 ogy,
(ACC) Vision Monito Warnin Rear (UNIT Cente and V	, Blind , Traffic oring ([*] ng (FV <u>Cross 1</u> <u>V A</u> r Cons Varning	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver	Brakin (IHC) it Veh Hill D Displ Tech	ng (AB), Tire hicle [Decent ay Te	EB), N Press Depar t Con t Con	ight sure ture trol, 9 ogy, river
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair	, Blind , Traffic oring (⁻ ng (FV <u>Cross 1</u> <u>V A</u> r Cons Varning ment	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im	Brakin (IHC) it Veh Hill D Displ Tech	ng (AB), Tire hicle [Decent ay Te	EB), N Press Depar t Con t Con	ight sure ture trol, 9 ogy, river
(ACC) Vision Monito Warnin Rear (UNIT Center and V Impair Transf), Blind , Traffic oring (T ng (FV Cross T V A V A r Cons Varning fer of C	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver	Brakin (IHC) it Veh Hill D Displ Tech	ng (AE), Tire hicle I Decen ay Te nolog nent	EB), N Press Depar t Con chnol gy -D Detec	ight sure trol, trol, 9 ogy, river tion,
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA	, Blind , Traffic oring (T ng (FV Cross T V A V A r Cons Varning ment fer of C L	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology	Brakin (IHC) it Veh Hill D Displ Tech	ng (AE), Tire hicle I Decen ay Te nolog nent	EB), N Press Depar t Con t Con	ight sure trol, trol, 9 ogy, river tion,
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR	, Blind , Traffic oring (T ng (FV Cross T V A T r Cons Varning ment fer of C L RSE OL	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology	Brakin (IHC) it Veh Hill D Displ Tech	ng (AE), Tire hicle I Decen ay Te nolog nent	EB), N Press Depar t Con chnol gy -D Detec	ight sure trol, trol, 9 ogy, river tion,
(ACC) Vision Monito Warnii Rear (UNIT Center and V Impair Transf TOTA COUR Upon	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning ment fer of C L SE OL comple	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology	Brakin (IHC) it Veh Hill D Displ Tech	ng (AE), Tire hicle I Decen ay Te nolog nent	EB), N Press Depar t Con chnol gy -D Detec	ight sure trol, trol, 9 ogy, river tion,
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning fer of C L Comple Reca	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology UTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components.	Brakii (IHC) it Ver Hill D Displ Tech npairm	ng (AB), Tire hicle I Decen ay Te nolog hent	EB), N Press Depar t Con cchnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning ment fer of C L SE OL comple Recal Apply	 Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Impontrol Technology DTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for automatical systems and components. 	Brakii (IHC) it Ver Hill D Displ Tech npairm motiv	ng (AB), Tire hicle I Decen ay Te nolog hent	EB), N Press Depar t Con cchnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnii Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3	, Blind , Traffic oring (ng (FV Cross T V A r Cons Varning ment fer of C L SE OL comple Reca Apply Evalu	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology UTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni	Brakii (IHC) it Ver Hill D Displ Tech npairm motiv	ng (AB), Tire hicle I Decen ay Te nolog hent	EB), N Press Depar t Con cchnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnii Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO3	, Blind , Traffic oring (ng (FV Cross T V A r Cons Varning ment fer of C L SE OL comple Recal Apply Evalu Desig	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology UTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems.	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs.	ng (AB), Tire hicle I Decen ay Te nolog hent	EB), N Press Depar t Con cchnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning ment fer of C L SE OL Comple Reca Apply Evalu Desig Deve	 Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY Ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Impontrol Technology DTCOMES: And explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electronin n and implement advanced driver assistance systems. op innovative automotive display and warning technologi 	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs.	ng (AB), Tire hicle I Decen ay Te nolog hent	EB), N Press Depar t Con cchnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5 REFE	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning ment fer of C L SE OL comple Reca Apply Evalu Desig Devel	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology DTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems. op innovative automotive display and warning technologi ES	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs.	ng (AB), Tire nicle I Decen ay Te nolog nent 45 F	EB), N Press Depar t Con echnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5 REFE	, Blind , Traffic oring (ng (FV Cross T V A r Cons Varning ment fer of C L SE OL comple Reca Apply Evalu Desig Deve RENCI Tom	Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology UTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems. op innovative automotive display and warning technologi ES Denton, "Automobile Electrical and Electronic systems,	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs.	ng (AB), Tire nicle I Decen ay Te nolog nent 45 F	EB), N Press Depar t Con echnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS
(ACC) Vision Monito Warnii Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5 REFE 1.	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning ment fer of C L SE OL Comple Recal Apply Evalu Desig Devel RENCI Tom France	 Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Imontrol Technology DTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electronin n and implement advanced driver assistance systems. op innovative automotive display and warning technologi ES Denton, "Automobile Electrical and Electronic systems, is Group, 5th Edition,2018. 	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs.	ng (AB), Tire hicle I Decen ay Te nolog nent 45 F	EB), N Press Depar t Con cchnol yy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS or &
(ACC) Vision Monito Warnii Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5 REFE 1.	, Blind , Traffic oring (T ng (FV Cross T V A r Cons Varning fer of C L SE OL Comple Reca Apply Evalu Desig Deve RENCI Tom Franc Willia	 Spot Detection, Parking Assist, Autonomous Emergency Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, Traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Imontrol Technology DTCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electronin n and implement advanced driver assistance systems. op innovative automotive display and warning technologies Denton, "Automobile Electrical and Electronic systems, is Group, 5th Edition,2018. m B Ribbens, "Understanding Automotive Electroni 	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs.	ng (AB), Tire hicle I Decen ay Te nolog nent 45 F	EB), N Press Depar t Con cchnol yy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS or &
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5 REFE 1. 2.	, Blind , Traffic oring (ng (FV Cross T V A r Cons Varning ment fer of C L SE OL Comple Reca Apply Evalu Desig Devel RENC Tom Franc Willia Persp	 Spot Detection, Parking Assist, Autonomous Emergency c Sign Recognition (TSR), Intelligent High beam Assistant (PMS), Front Collision Warning System (FCWS), From DW), Adaptive Lighting, Driver Drowsiness Detection, fraffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY Ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Imontrol Technology DTCOMES: tetion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems. op innovative automotive display and warning technologies Denton, "Automobile Electrical and Electronic systems, is Group, 5th Edition,2018. m B Ribbens, "Understanding Automotive Electron ective", Elsevier Science,8th Edition,2017. 	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs. Roulte ic: A	ng (AB), Tire nicle I Decen ay Te nolog nent 45 F e app edge" an Er	EB), N Press Depar t Con echnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DDS or & ering
(ACC) Vision Monito Warnin Rear (UNIT Cente and V Impair Transf TOTA COUR Upon CO1 CO2 CO3 CO4 CO5 REFE 1. 2.	, Blind , Traffic oring (ng (FV Cross 1 V A r Cons Varning ment fer of C L SE OL comple Reca Apply Evalu Desig Deve RENCI Tom Franc Willia Persp "Intell	Spot Detection, Parking Assist, Autonomous Emergency c Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology ITCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems. op innovative automotive display and warning technologi ES Denton, "Automobile Electrical and Electronic systems, is Group, 5 th Edition,2018. m B Ribbens, "Understanding Automotive Electron ective", Elsevier Science,8 th Edition,2017. igent Transportation Systems and Connected and A	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs. Roulte ic: A	ng (AB), Tire nicle I Decen ay Te nolog nent 45 F e app edge" an Er	EB), N Press Depar t Con echnol gy -D Detec PERIC	ight sure ture trol, 9 ogy, river tion, DS or & ering
(ACC) Vision Monito Warnii Rear (UNIT V Cente and V Impair Transf TOTA COUR Upon (CO1 CO2 CO3 CO4 CO5 REFE 1. 2. 3.	, Blind , Traffic oring (ng (FV Cross T V A r Cons Varning ment fer of C L Recal Apply Evalu Desig Devel RENCI Tom Franc Willia Persp "Intell Trans	Spot Detection, Parking Assist, Autonomous Emergency c Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, raffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology ITCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems. op innovative automotive display and warning technologi S Denton, "Automobile Electrical and Electronic systems, is Group, 5 th Edition,2018. m B Ribbens, "Understanding Automotive Electron ective", Elsevier Science,8 th Edition,2017. igent Transportation Systems and Connected and A portation Research Board, 2016.	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs. ies. Roulto	ng (AB), Tire hicle I Decen ay Te nolog hent 45 F e app edge" an Er ated	EB), N Press Depar t Con cchnol yy -D Detec PERIC licatio	ight sure ture trol, 9 ogy, river tion, DDS or & ering les",
(ACC) Vision Monito Warnii Rear (UNIT V Cente and V Impair Transf TOTA COUR Upon (CO1 CO2 CO3 CO4 CO5 REFE 1. 2. 3.	, Blind , Traffic oring (ng (FV Cross T V A r Cons Varning ment fer of C L SE OL Comple Reca Apply Evalu Desig Devel RENC Tom Franc Willia Persp "Intell Trans Rado	Spot Detection, Parking Assist, Autonomous Emergency c Sign Recognition (TSR), Intelligent High beam Assistant TPMS), Front Collision Warning System (FCWS), Fron DW), Adaptive Lighting, Driver Drowsiness Detection, traffic DAS DISPLAY & IMPAIRED DRIVER TECHNOLOGY ole Technology, Gauge Cluster Technology, Heads-Up g Technology – Driver Notification. Impaired Driver Sensor Technology, Sensor Technology for Driver Im ontrol Technology ITCOMES: tion of this course, the students will be able to: I and explain automotive systems and components. sensor technology to analyze and interpret data for auto ate and integrate ADAS technology into vehicle electroni n and implement advanced driver assistance systems. op innovative automotive display and warning technologi ES Denton, "Automobile Electrical and Electronic systems, is Group, 5 th Edition,2018. m B Ribbens, "Understanding Automotive Electron ective", Elsevier Science,8 th Edition,2017. igent Transportation Systems and Connected and A	Brakii (IHC) it Ver Hill D Displ Tech pairm motiv cs. ies. Roulto	ng (AB), Tire hicle I Decen ay Te nolog hent 45 F e app edge" an Er ated	EB), N Press Depar t Con cchnol yy -D Detec PERIC licatio	ight sure ture trol, 9 ogy, river tion, DDS or & ering les",

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COs			PO	s		
COS	1	2	3	4	5	6
1	1	1	2	2	1	1
2	1	1	2	2	1	1
3	1	1	2	2	1	1
4	1	1	2	2	1	1
5	1	1	2	2	1	1
Avg	1	1	2	2	1	1

V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30 ²	0 PROGRAMMING	IN PYTHON	L	Т	Р	С
			3	0	0	3
	SE OBJECTIVES:					
1.	To understand and apply fundamer					
2.	To develop proficiency in a progr solving tasks.		-		•	
3.	To analyze and evaluate different of program execution.	control flow structures and	d functi	ons fo	or effic	cient
4.	To demonstrate proficiency in worki	ng with various data types	and m	anipul	ating	data
	in programming.					
5.	To apply advanced techniques a	nd concepts to solve c	omplex	prob	lems	and
	develop efficient algorithms.					
	PROBLEM SOLVING			•		9
buildin code, f develo insert a	nentals of Computing – Identifica g blocks of algorithms (statements, low chart, programming language), a ping algorithms (iteration, recursion a card in a list of sorted cards, guess	state, control flow, functi algorithmic problem solvin a). Illustrative problems: f an integer number in a ra	ons), n g, simp ind mii	otation de stra nimum	n (pse ategies n in a	eudo s for list, anoi.
	DATA TYPES, EXPRESSIONS,					9
string, operat	interpreter and interactive mode, c and list; variables, expressions, ors, comments; Illustrative programs ues of n variables, distance between	statements, tuple assign : exchange the values of	nment,	prece	edence	e of
UNIT I	I CONTROL FLOW, FUNCTION	S, STRINGS				9
conditi return string Illustra	onals: Boolean values and operato onal (if-elif-else); Iteration: state, wh values, parameters, local and global slices, immutability, string functions tive programs: square root, gcd, ex	ile, for, break, continue, p scope, function composite and methods, string me	bass; F ion, rec odule;	ruitful cursior Lists a	function; Strip Strip Strip	ons: ngs: ays.
search	binary search.		-			9
Lists: I param methor sorting	st operations, list slices, list method eters; Tuples: tuple assignment, tup ds; advanced list processing - list , histogram, Students marks statem FILES, MODULES, PAC	ls, list loop, mutability, ali le as return value; Dictio comprehension; Illustra ent, Retail bill preparation (AGES	naries: tive pr	opera ogram	ations Is: sin	, list and nple
argum	nd exceptions: text files, reading a ents, errors and exceptions, handli ms: Programming Exercise					
TOTA	0 0			45 F	PERIC	DS
	SE OUTCOMES:					
	completion of this course, the studer	ts will be able to:				
CO1	Recall and explain the key concept algorithms, computational problems	s and components of pro		•		ding
CO2	Apply problem-solving techniques a variety of computational problems, strategies and approaches.	and algorithmic thinking to	analyz	e and	solve	a
CO3	Design and implement efficient and utilizing appropriate control flow stru	•		•		ems,
CO4	Evaluate and critique algorithms improvement, optimizing performan programming practices.	ce, and demonstrating an	unders	standir	ng of g	jood
CO5	Synthesize and integrate problem-s world scenarios, demonstrating the solve practical problems in various	e ability to apply problem				

the f. DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- Eric Matthhes "Python Crash Course" No Starch Press Edition 1, 2015
 Mark Lutz "Learn Python" O'Reilly Media,2009
- Al Sweigart "Automate the boring stuff with Python" No Starch Press Edition 1, 2016
 Wes McKinney "Python for Data Analysis" O'reilly Media, 2012

COs			PO	s		
003	1	2	3	4	5	6
1	1	1	1	-	-	1
2	1	1	1	-	-	1
3	1	1	1	-	-	1
4	1	1	1	-	-	1
5	1	1	1	-	-	1
Avg	1	1	1	-	-	1

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	11	MACHINE VISION AND COMPUTER VISION	<u>L</u>	T	P	C
		BJECTIVES:	3	0	0	3
1.	-	ecall and explain the fundamental principles and compone	nts of	mach	nine v	vision
••		computer vision systems, including the role of vision in h				
		penefits of machine vision.	annan	porot	puor	i unu
2.		apply knowledge of lighting parameters, techniques, and	d sou	irces	to d	esian
		tive lighting setups for machine vision applications,				
		traints and specific requirements.			5	
3.		nderstand the physics of light and its interactions, such a	as ref	ractio	n and	d thin
	lens	equation, and apply this knowledge to explain image f	ormat	tion ir	n ma	chine
	visio	n systems.				
4.	To a	nalyze and evaluate different image acquisition technique	s, inc	luding	g ma	chine
	visio	n lenses, optical filters, and imaging sensors, and make a	pprop	oriate	selec	tions
		ed on specifications and application requirements.				
5.		apply image processing techniques, including spatial an		•	•	
		ations, edge detection, morphology, and feature extract		o enh	ance	and
		yze digital images in the context of machine vision applica	tions			
<u>UNIT I</u>		INTRODUCTION TO VISION AND LIGHTING				9
		on – Machine Vision and Computer Vision – Benefits of Ma				
		d Function of Machine Vision and computer vision, Nome				
•		Light – Interactions of Light – Refraction at a Spherical				
•		cene Constraints – Lighting Parameters – Lighting Sources	, Sele	ection	– Lig	hting
		– Types and Selection.				-
		IMAGE ACQUISITION				9
		sion Lenses and Optical Filters, Specifications and Selectic				
		CMOS, Specifications – Interface Architectures – Analog		•		
-		mera Interfaces – Camera Computer Interfaces, Specifica				
	•	Geometrical Image Formation Models – Camera Calibra	ation	- Intr	Insic	and
		arameters, Estimation of Projection Matrix.				
		INAAOE DDOOEOOINIO AND INAAOE ANIAL VOIO				
UNIT I		IMAGE PROCESSING AND IMAGE ANALYSIS	A	:-:+:	Max	9
Machi	ne Vis	sion Software - Fundamentals of Digital Image - Image				des –
Machii Image	ne Vis Proc	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope	ration	, Thr	eshol	des – Iding,
Machii Image Grays	ne Vis Proc cale S	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin	ration g and	, Thr d Sha	eshol Irpen	des – Iding, ing –
Machin Image Grayse Edge	ne Vis Proc cale S Detec	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing-	ration g and Featu	, Thr d Sha ire ex	eshol rpen tracti	des – Iding, ing – ion –
Machir Image Grayse Edge Regior	ne Vis e Proc cale S Detec n Fea	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter	ration g and Featu	, Thr d Sha ire ex	eshol rpen tracti	des – Iding, ing – ion –
Machii Image Grayse Edge Regior Classi	ne Vis Proc cale S Detec n Fea ficatio	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter on	ration g and Featu	, Thr d Sha ire ex	eshol rpen tracti	des – Iding, ing – ion – g and
Machin Image Grayso Edge Region Classi UNIT	ne Vis cale S Detec n Fea ificatio	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter on 3-D IMAGE RECONSTRUCTION	ration g and Featu mplat	, Thr d Sha ire ex e Mat	esho rpen tracti chinç	des – Iding, ing – ion – g and 9
Machin Image Grayse Edge Region Classi UNIT I 3D Ma	ne Vis e Proc cale \$ Detec n Fea ficatio IV	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste	ration g and Featu mplat ereop	, Thr d Sha ire ex e Mat sis – (eshol rpen tracti ching Geon	des – Iding, ing – ion – g and g and
Machin Image Grayse Edge Region <u>Classin</u> UNIT I 3D Ma Param	ne Vis Proc cale S Detec n Fea ficatio IV	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E	ration g and Featu mplat ereop ssent	, Thr d Sha ire ex e Mat sis – 0 ial N	eshol rpen ctracti chinç Geon atrix	des - lding ing - ion - g and g and netry and
Machin Image Grayso Edge Region Classi UNIT I 3D Ma Param Funda	ne Vis Proc cale S Detec n Fea ficatio ficatio NV achine neters amenta	sion Software – Fundamentals of Digital Image – Image eessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triange	ration g and Featu mplat ereop ssent ulatio	, Thr d Sha ire ex e Mat sis – (ial M n, Vis	eshol rpeni ching Geon atrix ual M	des - lding ing - ion - g and g and betry and lotior
Machin Image Grayse Edge Region Classif UNIT I 3D Ma Param Funda – Moti	ne Vis Proc cale S Detec n Fea ficatio IV achine neters amenta ion Fie	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triange eld of Rigid Objects – Optical Flow – Estimation of Motion	ration g and Featu mplat ereop ssent ulatio Field	, Thr d Sha ire ex e Mat sis – (ial M n, Vis I – 3D	eshol rpen tracti ching Geon atrix ual M	des - lding - ion - g and g and hetry and lotior cture
Machin Image Grayse Edge Region Classif UNIT I 3D Ma Param Funda – Moti- and M	ne Vis Proc cale S Detec n Fea ficatio IV achine neters amenta ion Fie lotion	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangue eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se	ration g and Featu mplat ereop ssent ulatio Field	, Thr d Sha ire ex e Mat sis – (ial M n, Vis I – 3D	eshol rpen tracti ching Geon atrix ual M	des - lding - ion - g and g and hetry and lotior cture
Machin Image Grayso Edge Region Classi UNIT I 3D Ma Param Funda – Moti and M Proces	ne Vis Proc cale S Detec n Fea ficatio ficatio N achine neters amenta ion Fie lotion ssing.	sion Software – Fundamentals of Digital Image – Image eessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangue eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se	ration g and Featu mplat ereop ssent ulatio Field	, Thr d Sha ire ex e Mat sis – (ial M n, Vis I – 3D	eshol rpen tracti ching Geon atrix ual M	lding ing – ion – g and netry and lotion cture mage
Machin Image Grayso Edge Region Classi UNIT 3D Ma Param Funda – Moti and M Proces UNIT	ne Vis Proc cale S Detec n Fea ficatio IV achine neters amenta ion Fie lotion ssing. V	sion Software – Fundamentals of Digital Image – Image eessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangred of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS	ration g and Featumplat mplat ereop ssent ulatio Fielc egme	, Thr d Sha ire ex e Mat sis – (ial M n, Vis I – 3D ntatio	eshol rpen tracti chinç Geon atrix ual M Stru n – Ir	lding, ing – ion – g and g and lotion cture mage
Machin Image Grayso Edge Region Classir UNIT I 3D Ma Param Funda – Moti and M Proces UNIT 1 Machin	ne Vis Proc cale S Detec n Fea ficatio IV achine neters amenta ion Fie lotion ssing. V	sion Software – Fundamentals of Digital Image – Image cessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangue eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC	ration g and Featurnplat reop ssent ulatio Fielc egme	, Thr d Sha rre ex e Mat sis – (ial M n, Vis I – 3D ntatio	eshol rpen tracti ching Geon atrix ual M Stru n – Ir	lding ing – ion – g and g and lotion cture mage 9 /ision
Machin Image Grayse Edge Region Classir UNIT I 3D Ma Param Funda – Moti and M Proces UNIT V Machin Guide	ne Vis Proc cale S Detec n Fea ficatio IV achine neters amenta ion Fie lotion ssing. V ne Vi d Rot	sion Software – Fundamentals of Digital Image – Image sessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangued of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an	ration g and Featurnplat reop ssent ulatio Fielc egme	, Thr d Sha rre ex e Mat sis – (ial M n, Vis I – 3D ntatio	eshol rpen tracti ching Geon atrix ual M Stru n – Ir	lding ing - ion - g and g and lotion cture mage y ision
Machin Image Grayse Edge Region Classir UNIT I 3D Ma Param Funda – Moti and M Proces UNIT V Machin Guide	ne Vis Proc cale S Detec n Fea ficatio IV achine neters amenta ion Fie lotion ssing. V ne Vi d Rot	sion Software – Fundamentals of Digital Image – Image eessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangue eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an Reality, Surveillance, Bio-Metrics-Reverse Engineering.	ration g and Featumplat Preop ssent ulatio Fielc egme R an d Bic	I, Thr I Sha Ire ex e Mat sis – (ial M n, Vis I – 3D ntatio	eshol rpen tracti ching Geon atrix ual M Stru n – Ir SV, V ical I	lding ing - ion - g and g and lotion cture mage y ision
Machin Image Grayso Edge Region Classi UNIT 3D Ma Param Funda – Moti and M Proces UNIT Machin Guideo Augmo	ne Vis Proce cale S Detection fication IV achine neters amentation fiction ssing. V ne Vi d Rote ented	sion Software – Fundamentals of Digital Image – Image sessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangued of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an Reality, Surveillance, Bio-Metrics-Reverse Engineering.	ration g and Featumplat Preop ssent ulatio Fielc egme R an d Bic	, Thr d Sha rre ex e Mat sis – (ial M n, Vis I – 3D ntatio	eshol rpen tracti ching Geon atrix ual M Stru n – Ir SV, V ical I	lding ing - ion - g and g and lotion cture mage y ision
Machin Image Grayse Edge Region Classif UNIT I 3D Ma Param Funda – Moti and M Proces UNIT V Machin Guidee Augme	ne Vis Proce cale S Detection fication IV achine heters amentation ssing. V ne Vi d Rob ented	sion Software – Fundamentals of Digital Image – Image sessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triange eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an Reality, Surveillance, Bio-Metrics-Reverse Engineering. TOTAL	ration g and Featumplat Preop ssent ulatio Fielc egme R an d Bic	I, Thr I Sha Ire ex e Mat sis – (ial M n, Vis I – 3D ntatio	eshol rpen tracti ching Geon atrix ual M Stru n – Ir SV, V ical I	lding ing - ion - g and g and lotion cture mage y ision
Machin Image Grayse Edge Region Classif UNIT I 3D Ma Param Funda – Moti and M Proces UNIT V Machin Guidee Augme	ne Vis Processes Detection IV achine neters amentation Ssing. V Ne Vi d Rote ented	sion Software – Fundamentals of Digital Image – Image essing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangue eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an Reality, Surveillance, Bio-Metrics-Reverse Engineering. TOTAL	ration g and Featumplat Preop ssent ulatio Fielc egme R an d Bic	, Thr d Sha ire ex e Mat sis – (ial M n, Vis l – 3D ntatio d OC o Med	eshol rpen tracti ching Geon atrix ual M Stru n – Ir SV, V	lding, ing – ion – g and g and netry, and lotion cture mage /ision Field,
Machin Image Grayso Edge Region Classif UNIT I 3D Ma Param Funda – Moti and M Proces UNIT V Machin Guidee Augmo	ne Vis Processes Cale S Detection IV achine neters amentation Fiel lotion ssing. V ne Vi d Rote ented RSE O complesses	sion Software – Fundamentals of Digital Image – Image sessing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangued of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an Reality, Surveillance, Bio-Metrics-Reverse Engineering. TOTAL UTCOMES: letion of this course, the students will be able to: all and explain the key principles, components, and function	ration g and Featumplat Preop ssent ulatio Fielc egme R an d Bic	, Thr d Sha ire ex e Mat sis – (ial M n, Vis l – 3D ntatio d OC o Med	eshol rpen tracti ching Geon atrix ual M Stru n – Ir SV, V	lding, ing – ion – g and g and netry, and lotion cture mage /ision Field,
Machin Image Grayse Edge Region Classif UNIT I 3D Ma Param Funda – Moti and M Proces UNIT V Machin Guidee Augme	ne Vis Proce cale S Detection fication IV achine neters amentation fication ssing. V ne Vi d Rote ented Rece and	sion Software – Fundamentals of Digital Image – Image essing in Spatial and Frequency Domain – Point Ope Stretching – Neighborhood Operations, Image Smoothin ction – Binary Morphology – Colour image processing- tures, Shape and Size features – Texture Analysis – Ter 3-D IMAGE RECONSTRUCTION Vision Techniques – Decision Making, Computational Ste – Correspondence Problem, Epipolar Geometry, E al Matrix, Eight Point Algorithm – Reconstruction by Triangue eld of Rigid Objects – Optical Flow – Estimation of Motion from Sparse and Dense Motion Fields – Motion Based Se VISION APPLICATIONS sion Applications - Metrology and Gauging-GD&T, OC potics – Field and Service Applications – Agricultural, an Reality, Surveillance, Bio-Metrics-Reverse Engineering. TOTAL	ration g and Featurnplat Preop ssent ulatio Fielc egme R ar d Bic 45 PE	, Thr d Sha rre ex e Mat sis – (ial M n, Vis I – 3D ntatio d OC o Med ERIOL	eshol rpen tracti chinç Geon atrix ual M Stru n – Ir V, V ical I	lding ing – ion – g and g and lotion cture mage /ision Field

the P. DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

000		· · ·					<u> </u>
CO3	Implement image	processing algor	ithms a	nd techn	iques to	enhar	ice and analyze
	digital images.						· · · ·
CO4	Recognize and uti	lize 2D and 3D m	achine	vision te	chniques	s for ree	construction and
0.05	analysis.			<i></i>			
CO5	Develop machine		s for var	ous field	ls, consid	dering t	he requirements
	and constraints of	each domain					
	RENCES						
	exander Hornberg, '						
	avies E.R, "Compute		sion: Th	eory, Alg	orithm, H	ractica	alities" Academic
	ess, Elsevier, 2012.			- ·	· •		
	nanuele Trucco, Ale	ssandro Verri, "In	troducto	ory Lechi	niques fo	or 3D C	omputer Vision",
	entice-Hall, 1997.						
	igene Hecht, "Optic						00.17
	afael C.Gonzales, R						
	orsyth and Ponce, "(
	oguslaw Cyganek, J.		Introdu	ction to 3	SD Comp	outer VI	sion l'echniques
	d Algorithms", Wille		· · · · · · · ·				
	avies E.R, "Comp		ne Visio	on: The	ory, Alg	jorithm	, Practicalities",
	ademic Press, Else		4				
	nanuele Trucco, Ale	ssandro Verri, "In	troaucto	ory rechi	niques to	or 3D C	omputer vision",
	entice Hall, 1998		"Distal				
	afael C. Gonzales, F						
	nanuele Trucco, Ale	ssandro Verri, "In	troducto	ory Techi	niques to	or 3D C	omputer Vision",
	entice Hall, 1998.	NAME:		1. C			0045
12. Fo	orsyth and Ponce, "O	computer Vision:	A Mode	m Appro	ach", Pe	earson,	2015
			_		1A	<u> </u>	
			1	× 8.5	$\lambda \downarrow$	-	
	COs		PC	S			
	003	1 2	3	4	5	6	
	1	1 1	3	2	1	2	
	2	1 1	2	1	1	2	
	3	1 1	3	2	1	2	1
	4	1 1	2	2	2	2	
	5		3	2	2	2	4
							-
	Avg	1 1	2.6	1.8	1.4	2	
	PR	OGRESS THR	OUGH	KNOV	VLEDG	Ε	

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	12	MACHINE LEARNING AND DEEP LEARNING	L	Т	Р	С
			3	0	0	3
COUR	SE O	BJECTIVES:				
1.		nderstand the fundamental concepts and principles of ma ing, and neural networks.	chine	e learr	ning, c	leep
2.		apply various supervised, unsupervised, and semi- apply to solve real-world problems.	supei	vised	lear	ning
3.	To i	nplement and evaluate reinforcement learning algorition-making tasks.	thms	for s	seque	ntial
4.	To de	esign, train, and optimize neural networks and deep learnin cations.	g mo	dels fo	or diffe	rent
5.	To a	nalyze and interpret the performance of machine learnin els and make informed decisions for improvement.	g and	d deel	o lear	ning
UNIT I		SUPERVISED LEARNING METHODS AND REGRESSI	ON			9
Introdu	uction	to Machine Learning - Platforms for ML- Classifiers -		Nai	ve Ba	aves
		d KNN and SVM, Decision Tree, Regression methods.	/	, u i		.,
UNIT		SEMI-SUPERVISED LEARNING AND UNSUPERVISED	LEA	RNIN	G	9
-		vised Learning Methods- Association Rule Learning -				-
		d Learning Methods- Expectation-Maximization (EM)-				
		Fuzzy K-means and C-means Algorithm- Density-Based				
	-	with Noise (DBSCAN)- Conceptual Clustering.				5
		REINFORCEMENT LEARNING, FUZZY AND GENETIC	ALG	ORIT	HMS	9
Reinfo	rceme	ent Learning Methods- Markov Decision Processes (MDPs)				₹SA,
		epts in Fuzzy Set Theory - Fuzzy Classification,				
Initializ	zation,	Selection, Mutation and termination. Swarm Intelligence	e (PS	O) -A	nt Co	lony
		(ACO).				
UNITI	V	NEURAL NETWORKS AND DEEP LEARNING FUNDA	MEN	TALS		9
Introdu	uction	to Neural Networks, Perceptron, Multi-Layer Perce	ptron	(ML	P), E	3ack
Propag	gation	(BPN), Tuning Neural Networks and Best Practices-Train	ing N	leural	Netw	orks
and U	pdate	Rules- Neural Networks vs Conventional Neural Networks	s vs [Deep I	_earn	ing -
Convo	lution	al Neural Networks (CNN)-Convolution, Pooling, Activation	n Fun	ctions	5 -	-
Initializ	zation,	Dropout, Batch Normalization, Deep Learning Hardware	(CPL	I, GPL	J, TPl	J).
UNIT	V	CONVOLUTIONAL NEURAL NETWORKS AND DE	EP	LEAR	NING	i 9
		APPLICATIONS				
Deep	Lean	ning Frameworks - Data Augmentation-Transfer Lea	arning	-Ρορι	ular (CNN
		s for Image Classification (AlexNet, VGG, ResN				
Archite	ecture	s for Object Detection (RCNN, YOLO)-Semantic Segment	ation	(FCN))-Insta	ance
		n (Mask RCNN).				
ΤΟΤΑ				45 PE	RIO)S
		UTCOMES:				
Upon		etion of this course, the students will be able to:				
CO1	Reca	Il and explain the key principles and algorithms of mad	chine	learn	ing, c	leep
		ing, and neural networks.				
CO2		/ different supervised, semi-supervised, and unsupervised /ze and interpret data.	l leari	ning m	nethoo	ls to
CO3	Imple	ement reinforcement learning algorithms, fuzzy logic, and going complex problems.	genet	ic algo	orithm	s for
CO4	Desi	gn, train, and evaluate neural networks and deep learning	g mo	dels f	or var	ious
CO5	Deve	lop program for neural network and advanced deep learni ification, object detection, and semantic/instance segmentic			for in	nage

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Ethem Alpaydin, "Introduction to Machine Learning" The MIT Press, Cambridge, London, 2020.
- 2. Klir G.J. Yuan Bo, "Fuzzy sets and Fuzzy Logic: Theory and Applications", Prentice Hall, 2019.
- 3. Laurene Fausett, "Fundamentals of Neural Networks, Architectures, Algorithms and Applications", Prentice Hall, Englewood Cliffs, 2000.
- 4. Rajasekaran S, Vijayalakshmi Pai GA, "Neural Networks, Fuzzy Logic and Genetic Algorithms", Prentice Hall of India Private Limited, 2011.
- 5. Randy L. Haupt, Sue Ellen Haupt Practical Genetic Algorithms, Wiley Inter science 2004.
- 6. Simon Haykin, "Neural Networks A Comprehensive Foundation", Prentice Hall, Third Edition, 2004.
- 7. Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep Learning", First Edition, MIT Press, 2018

COs	POs								
COS	1	2	3	4	5	6			
1	1	1	1		1	1			
2	1	1	1	J-2	1	1			
3	1	1	1 11/	2.6-1	2	1			
4	1	1	1	12.2	2	2			
5	1	1-	1	No.	2	2			
Avg	1	<i>i</i>	1	1	1.6	1.4			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR301	3	HAPTICS AND MIXED REALITY	L	Τ	Ρ	С
			3	0	0	3
		BJECTIVES:				
		entify the terminologies of haptic devices.	tolo	norot	ion fe	
		nderstand the structure of haptic system and to aware the	tele-0	pera)I
3.		us applications. cquire the knowledge on modelling for haptic system deve	lonm	ont ro		+ +0
		uman.	lopm	entre	levar	
			monte	d roo	1:+. /	
		mphasize the significance of knowledge in virtual and aug	nente	ed rea	iity.	
	IOK	now the concepts and hardware of mixed reality.				•
UNIT I		INTRODUCTION TO HAPTICS			0	9
		Importance of Touch - Tactile Proprioception - Tactua				
		Interfaces - Tactile Interfaces - Human Haptics - C				
		- Basics of Force Feedback Devices - Kinesthetic Vs. Tag		aptic	Devi	ces -
		ons of Kinesthetic Devices -Types of Kinesthetic Devices	<u></u>			
		KINESTHETIC HAPTIC DEVICES AND TELEOPERATIO				9
		s in Haptics System - Haptic Kinematics - Haptic I				0
		Devices - Haptic Device Static Rendering - Haptic Device				
		laptic Devices - Stability Analysis of Haptic Devices - Sta				
		Nodel -Passivity of the Rendered Model. Types of Senso				
		ameters - Types of Actuators - Types of Transmission				
		Device - Admittance Control - Comparison of Impedance a				
		Genesis of Tele-Operation - Tele-Operation Contro				
•		cy - Stability Analysis of Tele-operator - Tracking and Tra	nspa	rency	- Su	rtace
		ogenous Force Inputs.				
UNIT II		HUMAN HAPTICS ITS PLATFORM				9
		- Types of Haptic Sensing - Active vs. Passive Touch				
		ceptive Afferents - Kinesthetic Sensing - Force Sensing				
		to Psychophysics - Measurement Thresholds - Laws				
		w - Fechner's Law - Fitt's Law - Psychophysical Method				
		Adjustment -Introduction to Virtual Reality Modelling Langu				
•		form - OpenGL- Virtual Environment Manager-Modellir	ig of	Simp	ole H	aptic
System						
UNIT I		VIRTUAL AND AUGMENTED REALITY	1			9
		- Virtuality Continuum - Virtual Reality Definitions -				
Sensat	tion a	and Perception - Multi-Modal Interaction Challenges - Sy	stem	Arch	itectu	re of
Virtual	Rea	ity. Aspects of Geometrical Modelling and Environmenta	al Mo	delling	g Ge	neral
		r Calculating Geometric & Illumination Consistency				
Enviror	nmer	t. Usability Guidelines - Design and Implementation of	an I	mmer	sive	User
Experie	ence	- Case Study for VR and AR.				
UNIT V	/	MIXED REALITY				9
System	n Arc	nitecture of a Mixed Reality System - Common Interaction	Techr	iques	for N	lixed
		ronments - Common Navigation Techniques - Common Int				
Design	Dire	ections - Haptic Control Panel - Performance of an Inte	eractio	on Te	chnic	ques,
Advand	ced	nteraction Techniques, Design and Implementation of	an l	mmer	sive	User
		- Case Study for MR.				
TOTAL			15 PE	RIOD	S	
		UTCOMES:				
		etion of this course, the students will be able to:				
		lire a comprehensive understanding of haptics, incl	udina	its	defin	ition.
	•	ponents, and applications.				· · · · ,
CO2		cribe the principles and theories underlying haptics, kine	sthet	ic dev	/ices	and
		peration.	2	2 301		
CO3		y the knowledge of haptics and kinesthetic devices to desi	an ar	d con	trol h	antic
505	•••		yn al			apric
	svet	ems, ensuring stability and rendering accuracy.			Att	ested

the P. DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	<u> </u>							
CO4	Analyze haptic	-			rements,	and psy	/chophy	sical laws to
0.05	evaluate and o							
CO5	Ç I	tic technolo	0					nixed reality
	environments,	considering	interact	ion techi	niques, u	iser exp	erience,	and system
	performance.							
	RENCES			-				
	Burdea, G. C. ar							
	Eckehard Steinb							
	Hannaford B an 718-735, 2008.	d Okamura	А. М "Н	aptics:	Handboo	K of Rol	ootics",	Springer, pp.
	Kenneth Salisbu	ury Francoi	e Conti	and Eq	derico F	Barbadli	"Hanti	c Rendering:
	Introductory Con				JUGHOU L	Jaibayii,	Παριι	s Rendening.
	Jean-Pierre Bres					st "Hum	an Hant	tic Percention
	and the Design							
	Its Rendering", S				WIIOIIIIC	11.5. 1110	Conse	
	MacLean K. E, "I				vervdav	Interface	s [.] Revie	ws of Human
	Factors and Erge				, i oi y aay		0	
	Weir D. W and				f Haptic	Display	: Hapti	c Rendering:
	Foundations, Alg	porithms, and	Applica	tions". Al	K Peters,	2008.		_
	Sherman, Williar					ng Virtua	l Realit	y – Interface,
	Application, and	0 /	U			8		
9.	Yuichi Ohta, Hio	deyuki Tamu	ra, "Mixe	ed Realit	y: Mergi	ng Real	and Vi	rtual Worlds",
	Springer-Verlag,	2013.	111	N I V I	5 J K			
			1.2		1.0	1 mar		
		No.	V.C.			20		
	COs			PO	s			
	003	1	2	3	4	5	6	
	1	3	1	2	1	1	1	
	2	3	1	3	2	2	2	
	3	3	1	3	2	2	2	
	4	2	1	2	3	3	3	
	5	2		2	3	3	3	
	Avg	2.6	1=	2.4	2.2	2.2	2.2	
					- 10 A 10	and the second second		

PROGRESS THROUGH KNOWLEDGE

VA DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR301	14	APPLIED SIGNAL PROCESSING	1	Т	Р	С				
	• - F		3	0	0	3				
COUR	SF OBJ	ECTIVES:	•	v	v	U				
1.		erstand the generation and characteristics of variou	is tv	oes o	of siar	hals				
		g speech, seismic, radar, vibration, ultrasonic, pressure								
	and bio		, 0010	,	pora					
2.		n the pre-processing techniques for signals, includ	ina n	oise	reduc	tion				
		and denoising concepts.		0100	louuo	,				
3.		y digital signal processing techniques, such as time s	eries	analy	/sis. ti	ime-				
•••		cy representation, signal modeling, and power spectral								
4.		ore feature extraction methods for signals, includin								
	•	m (STFT), discrete Fourier transform (DFFT), wavelet	0							
		ecomposition (EMD), and time-frequency representatio		,	- 1					
5.		yze and apply signal processing techniques in various		ation	s, suc	h as				
		analysis, bio signals analysis, radar signal proces								
	computation, brain-computer interface, and fusion techniques									
UNIT I	· · · ·	SOURCES OF SIGNALS				9				
Genera	ation and	I Characteristics of Speech Signals – Seismic Signals	– Rad	dar - N	/ibrati	on –				
Ultrasc	onic - P	ressure – Strain - Temperature Signals - Bio Sig	gnals	- EC	CG, E	EG,				
		am - EMG.								
UNIT I	l	PRE-PROCESSING OF SIGNALS				9				
		& Characteristics – Filters - IIR and FIR Filters -Design								
		r, Band Pass Filter, Notch Filter Chebshiv Filters. Elliptic			tter W	orth				
		n Filter - Adaptive Filtering - Comb Filter- Denoising Co	ncep	ts.						
UNIT I		DIGITAL SIGNAL PROCESSING	<u>}</u>			9				
		nalysis –Time Varying Analysis - Time Frequency Rep	orese	ntatio	n - AF	RM۶				
		g - FFT - Power Spectral Density Estimation.								
UNIT I		FEATURE EXTRACTION METHODS				9				
		- Sine and Cosine Transform - Wavelet Concep								
		(EMD) - Time Frequency Representation, Spectro								
	0	Features of the Signal: Energy, Average Magnitude - In	trodu	ction 1	o ⊢ea	iture				
		Classification Techniques.								
		ANALYSIS AND APPLICATION OF SIGNAL PROC			0:0	9				
		sis of Speech Signals – Spectral Analysis Bio Signals a			0					
		Processing for Multiple Sensor Informations - Signal Pr tion and Brain Computer Interface – Introduction to Fus				Juve				
		COMES ROGRESS THROUGH KNOWLEDGE	+J F L		5					
		on of this course, the students will be able to:								
CO1		knowledge of signal generation, characteristics, a	nd va	arious	tyne	s of				
		as well as noise sources and filtering techniques.			upo.	5 01				
CO2		strate an understanding of pre-processing techniques	for si	anals	inclu	dina				
		sign and denoising concepts.		g. 1010,		Sing				
CO3		igital signal processing techniques, such as time seri	es ar	alvsis	s. spe	ctral				
		, and signal modeling, to analyze and process signals.			,	oi				
CO4		and interpret different time-frequency represent		s an	d fea	ture				
		on methods for signals, evaluating their effectiv				cific				
	applicat									
CO5		e the application of signal processing techniques in div	verse	areas	s, suc	h as				
		analysis, bio signals analysis, radar signal proces								
	•	ation, and brain-computer interface, and assess the	•							
	•	ues for signal processing tasks.	1							
I										

Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Arnon Cohen, "Bio-Medical Signal Processing Vol-I and Vol-II", CRC Press Inc., Boca Rato, 2019.
- 2. Emmanuel C. Ifeachor, Barrie W.Jervis, "Digital Signal Processing- A Practical Approach", Pearson, 2002.
- 3. Raghuveer M. Rao and Ajith S.Bopardikar, "Wavelets Transform Introduction to Theory and its Applications", Pearson, 2000.
- 4. Rangaraj M. Rangayyan, "Biomedical Signal Analysis A Case Study Approach", Wiley-Interscience / IEEE Press, 2002.
- 5. Willis J. Tompkins, "Biomedical Digital Signal Processing", Prentice Hall of India, New Delhi, 2006.

CO2	POs							
COs	1	2	3	4	5	6		
1	3	1	1	3	2	2		
2	2	1	1	2	2	2		
3	2	1	1	3	3	2		
4	2	1	1	3	2	2		
5	3	- 00	1	3	2	2		
Avg	2.4	1	1	2.8	2.2	2		

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	01 SINGLE BOARD COMPUTERS AND PROGRAMMING	L	т	Р	С				
		3	0	0	3				
COUR	RSE OBJECTIVES:				1				
1.	To understand the architecture and features of single-board compute on-board system components, communication protocols (SPI, I2C, U Ethernet, CAN), and input devices (GPIO, memory, camera).]				
2.	To explore real-time operating systems, including their architecture resource management, process scheduling, and applications in embe								
3.	To learn Python programming language, including data types, functions, file handling, object model, iterative and conditional statements, operators, arrays, and GUI development.								
4.	To develop skills in embedded Python programming, including GPIO numerical and communication libraries, image processing, and mach								
5.	To explore applications of single-board computers in automotive, m IoT, factory automation, and home automation.	nobi	le ro	oboti	CS,				
UNIT					9				
-Ether Came	pard System Architecture - Processor- Architecture – Features - SPI-I20 net- CAN Protocol - Wi-Fi – Bluetooth - HDMI- GPIO- Memory- In ra Interfacing.								
UNIT	II REAL TIME OPERATING SYSTEM				9				
Sched	iting System Architecture – File Systems- Resource Manageme Juling – Applications.	nt	— F	Proce	ess				
UNIT	III PYTHON PROGRAMMING				9				
Handl Check	Data – List, Dictionary and Set – Processing Primitives – List Comprehension ing – Object Model Including Variables, Reference Counting, Copy king – Error Handling Iterative Statement- Conditional Statement Libraries- Library - GUI Development. IV EMBEDDED PYTHON PROGRAMMING	ing,	an	d Ty	′pe				
GPIO	Programming - Numerical Library- Communication Library- Image	Pr	oce	ssing	-				
	ne Learning.				9				
UNIT					9				
Auton	notive – Mobile Robotics - IOT- Factory Automation - Home Automation		D O						
00115	TOTAL 45 PE	RIU	05						
	RSE OUTCOMES:								
	completion of this course, the students will be able to:				<u>_</u>				
CO1	Acquire knowledge of the architecture, features, and communication single-board computers, as well as real-time operating system conceptogramming language.								
CO2	Describe the underlying principles and functioning of single-board contraction of single-board contraction of single-board contractions and Python programming constructs.	omp	outer	s, re	al-				
CO3	Apply Python programming skills to develop programs for embed including GPIO programming, numerical operations, communication processing.	on,	and	ima	ige				
CO4	Analyze the requirements and constraints of different applications robotics, IoT, and automation, and select appropriate single-bo solutions.	bard	l cc	mpu	ter				
CO5	Design and implement projects utilizing single-board computers, real- systems, and Python programming, addressing specific application as automotive, mobile robotics, IoT, factory automation, and home a	doi	mair	าร รเ					

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. David Beazley and Brian K. Jones, "Python Cookbook", O'Reilly Media, 2013
- 2. Gabriele Manduchi and Ivan CibrarioBertolotti, "Real-Time Embedded Systems: Open-Source Operating Systems", CRC Press, 2017.
- 3. Guttag, John. "Introduction to Computation and Programming Using Python", MIT Press, 2016.
- 4. NinadSathaye, "Learning Python Application Development", Packt Publishing, 2016
- 5. Sai Yamanoor, Srihari Yamanoor, "Raspberry-Pi Mechatronics Projects", Packt Publishing, 2016.
- 6. Warren Gay, "Mastering the Raspberry Pi", Apress, 2014.

COs	POs								
COS	1	2	3	4	5	6			
1	1	1	2	1	-	2			
2	1	1	2	1	-	1			
3	1	1	3	1	-	1			
4	1	1	2	2	-	2			
5	1	1	3	1	-	2			
Avg	1	1	2.4	1.2	-	1.6			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR301	5	COMMUNICATION PROTOCOLS	L	Т	Р	С			
	•		3	0	0	3			
COURS	SF OBJ	ECTIVES:	•	•	•				
1.		lerstand wired communication buses and protoco	ls i	ncludi	na s	erial			
		nication protocols, parallel communication, and wired no							
2.		ore wireless protocols and technologies, including a							
		topologies, and wireless communication standards li							
		and Wimax.		/1-1 1, 1	Diueic	our,			
3.		knowledge of wired networks used in industrial and a	itono	mour	ovete	me			
		Modbus, HART, EtherCAT, CAN, PROFINET, and Dev			Syste	лн 5 ,			
4.		about industrial wireless networks, including IWLA			Wiro	locc			
4.		and remote network technologies.	N, IO	A100,	VVIIC	1033			
5.	To apply communication protocols in various industrial and automation applications,								
		ring wired and wireless machine networking, com	mum	CallOI	i new	VOIK			
	design,	and integration with cloud computing and IoT.				9			
-		WIRED BUSES AND PROTOCOLS	-		00110	-			
		d Networks Comparison - Serial Communication Proto							
		O Bus -1 Wire - Camara Link - Parallel Communication			vvisno	one			
		JTAG - Fireware IEEE 1394 Bus - Ethernet Overview -	R540	55		-			
		WIRELESS PROTOCOLS	NI (// ۸ / / ۸	9			
		nology- Network Topologies - Wireless Local Area							
		nal Area Networks (WPAN) - Wimedia – Wimax - RF	– Blu	letoot	n- vvi-	·FI —			
-		ess Industrial Automation Protocols.							
UNIT II		INDUSTRIAL AND AUTONOMOUS SYSTEMS WIR							
		ndustrial Wired Networks - Terminal Bus- Modbus							
		- Ether CAT- Sercos II/III - CAN- Canopen - Modbe							
		ernet/I Ethernet Powerlink- AG Automation and Drives	(AS-	I) - De	evice I	-			
UNIT IN		INDUSTRIAL WIRELESS NETWORKS				9			
		lustrial Wireless Networks - IWLAN - ISA100 Standards							
		ed Networks - Wireless HART Technology - 3G/4G for	Auto	omatic	on – R	RFID			
Data Ta									
UNIT V		APPLICATION OF COMMUNICATION PROTOCAL				9			
		Networking of Sub-elements and Machines - Wireless							
		s and Machines – Networking of Industry - Communica							
		orking for TIA- Cloud Computing - IOT - Case Stu	udies	in A	utoma	ation			
Applica									
TOTAL			5 PE	RIOD	S				
		COMES: KUGKESS THKOUGH KNOWLEDGE							
		on of this course, the students will be able to:							
CO1	Acquire	knowledge of wired and wireless communication	prot	ocols	, netv	vork			
	topologi	es, and standards used in industrial and autonomous s	<u>yste</u> r	ns.					
CO2	Describ	e the differences between wired and wireless netwo	orks,	as w	ell as	the			
	advanta	ges and limitations of various communication protocols							
		vired and wireless protocols in practical scenarios,		n as	desig	ning			
		nication network layouts for machines and industrial sys			0	5			
CO4		the requirements and constraints of different commu			otoco	ls in			
	•	al settings, considering factors like reliability, scalability,		•					
		and implement communication networks for s			utoma				
		ions, integrating wired and wireless protocols effectiv							
		g technologies like cloud computing and IoT.	5.9 0						
	Gineryll	y comologies like cloud computing and lot.							

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

1. BorkoFurht, "Encyclopedia of Wireless and Mobile Communications - Three Volume Set", CRC Press, 2012.

2. Dick Caro, "Wireless Networks for Industrial Automation", 2014.

3. MMC-SD SERCOS Drive, "G&L Motion Control", Hardware Manual, 2005.

4. Olaf Pfeiffer, Andrew Ayre and Christian Keydel, "Embedded Networking with CAN and CANopen", Copperhill Technologies Corporation, 2016.

5. Richard Zurawski, "Industrial Communication Technology", CRC Press, 2017.

6. Siemens IK, "Industrial Ethernet: IEEE 802.3", 2005.

7. Wolfram Behardt and Jorg Wollert, "The wireless B: Evolution and Communication", Stetue Germany, 2016.

COs	POs							
005	1	2	3	4	5	6		
1	1	1	2	1	-	2		
2	1	1	2	1	-	2		
3	1	1	3	1	-	2		
4	1	1	3	1	-	2		
5	1	1	3	1	-	2		
Avg	1	1	2.6	1	- 1	2		

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3016	FPGA FOR EMBEDDED SYSTEMS	L	Τ	Ρ	С
		3	0	0	3
COURSE OB.				····	<u> </u>
	erstand the architecture of FPGA, EPLD, and CPLD, is and TMS320C54x/C6x architecture.	nciua	ing XII		GA
	n the design principles of synchronous and asynchrono	us se	auenti	al circ	uits.
	ng FPGA programming technologies, logic cell struc				
	nnect, and I/O ports.	,	1 0		
	proficiency in programming FPGA devices, including th				
circuits	, SDRAM, FIR filters, A/D converters, and using I	nardw	are d	lescrip	otion
	ges like Verilog and VHDL.				
	olore fault diagnosis and testability algorithms for FI				
	ng fault table method, path sensitization method, Boolea	an diff	erenc	e metl	hod,
	ce techniques, and built-in self-test.				
	relop FPGA-based hardware systems, such as data lers for high-speed drives, and applications in automations				
industr	•	allon	anu a	utome	
UNIT I					9
	f EPLD, Programmable Electrically Erasable Logic, C	PLD	Archi	ecture	-
	- Xilinx 2000 - Xilinx 4000 family - Architecture of E				
	asable Logic -TMS320C54x and TMS320C6x Archit				
Machines (FS					
UNIT II	SYNCHRONOUS AND ASYNCHRONOUS SEQUE	NTIA		CUIT	9
	DESIGN				<u> </u>
	mming Technologies - FPGA Logic Cell Structures - I				
	and I/O Ports - FPGA Implementation of Combinatic				
	cuits - Timing Issues in FPGA Synchronous Circuits - Sequential Networks (CSSN) - Modelling of CSSN – Sta				
	n – Design of CSSN – ASM Chart – ASM Reali				
	Sequential Circuit (ASC) – Flow Table Reduction – R				
	roblem and the Transition Table - Design of ASC -				
Hazards - Ess	ential Hazards			•	
UNIT III	PROGRAMMING OF FPGA	_			9
	etic Circuits - Design of SDRAM, Partial Reconfigurat				•
	Converter - Introduction to Verilog HDL and FPGA De				
Ų.	Programming FPGAs - Application Specific Integrated C		•	, ,	
	orary Cell Design - Verilog and Logic Synthesis - VHDL				
Generation.	nulation - Boundary Scan Test - Fault Simulation - Au	лотта	lic re	SI Fai	lem
	FAULT DIAGNOSIS AND TESTABILITY ALGORIT	HMS			9
-	ethod – Path Sensitization Method – Boolean Differer		lethod	– Ko	-
	lerance Techniques-Built-in Self-Test				
UNIT V	DEVELOPMENT OF FPGA BASED HARDWARE				9
Design of Dat	a Acquisition Device – 4 Channel, 8 Channel, Variable	e San	npling	Rate	and
Design of FF	GA Based Controller - Design of Controller for H	ligh-S	Speed	Drive	es -
	Automation Automotive.				
TOTAL		45 PE	ERIOD)S	
COURSE OU					
	on of this course, the students will be able to: howledge of FPGA architecture, EPLD, CPLD, X	(iliny		formi	lice
	0C54x/C6x architecture, and programming technologie				nes,
	strate an understanding of synchronous and asynchror				rcuit
	principles, FPGA logic cell structures, and timing is				
circuits			,	0	
				filte	A 0 /

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

CO3	Apply programming techniques to implement various FPGA circuits, including
	arithmetic circuits, SDRAM, FIR filters, and A/D converters.
CO4	Analyze and evaluate fault diagnosis and testability algorithms for FPGA-based
	systems, identifying and addressing potential issues in the design.
CO5	Design and develop FPGA-based hardware systems, such as data acquisition devices and high-speed drive controllers, utilizing the concepts learned in the course and applying them to real-world applications in automation and automotive
	industries.
REFE	RENCES
1. Bla	ine Readler, "Verilog by Example: A Concise Introduction for FPGA Design", Full
Arc Pr	ress, 2011
2. Cha	arles H. Roth Jr., "Digital Systems Design using VHDL", Cengage Learning, 2016

3. Chu P, "FPGA Prototyping by Verilog Examples," Wiley, 2011.

4.John V.Oldfeild, Richard C.Dorf, "Field Programmable Gate Arrays", Wiley India Edition, 2008

5. Krishna. C.M, Kang G. Shin, "Real Time Systems", McGraw Hill, 2009.

 Morris Mano, "Digital Design: With an Introduction to the Verilog HDL", Pearson, 2017.
 Rahul Dubey, "Introduction to Embedded System Design using Field Programmable GateArrays", Springer Verlag London Ltd., 2010.

8. Steve Kilts, "Advanced FPGA Design," Wiley-IEEE Press, 2007

COs	POs								
003	1	2	3	4	5	6			
1	3	1	17	2		1			
2	2	1	1		Ci_	1			
3	2	1	1	-	N-II	1			
4	2	1	1		-	1			
5	2	1	1	-	-	1			
Avg	2.2	1	1	-		1			

PROGRESS THROUGH KNOWLEDGE

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	17	GPU COMPUTING L	.	Т	Ρ	С
		3	,	0	0	3
COUR	SE OBJ	ECTIVES:				
1.		erstand the fundamentals of GPU computing and its role computing.	in h	eter	ogene	eous
2.	•	knowledge of the architecture of modern GPUs and the notion graphics pipelines to unified graphics and computin				
3.		parallel programming languages and models, with a focu				
4.	To expl	pre data parallelism and CUDA programming, including p management, and thread organization.	anization.ACC as alternative parallel programming cution and memory models.OMPUTING9ure of a Modern GPU, Speeding Up nguages and Models. Evolution of Graphics s Pipelines, Evolution of Programmable Real- 			
5.		oduce OpenCL and OpenACC as alternative para orks and understand their execution and memory models.	lel	proę	gramr	ning
UNIT		INTRODUCTION TO GPU COMPUTING				9
Real A Pipelin Time	Applicationes, The Graphics It Develog	ns, Parallel Programming Languages and Models. Evol Era of Fixed-Function Graphics Pipelines, Evolution of Pro , Unified Graphics and Computing Processors, GPGPU oments, Future Trends.	utioi ograi , Sc	n of mma calab	Grap able R	Real- PUs,
Data	Parallelis	m, CUDA Program Structure, A Vector Addition Kerne			ce Gl	-
UNIT I		DATA-PARALLEL EXECUTION MODEL AND CUDA	JEN	/OR	IES	9
Multipl Assigr Memo	lication— hing Res ries -Imp	A More Complex Kernel, Synchronization and Transpources to Blocks, Thread Scheduling and Latency Tortance of Memory Access Efficiency, CUDA Device Memory Multiplication Kernel, Memory as a Limiting Factor to Page	oarei olei ory T	nt S ranc Type	calab e. Cl s, A 1	oility, JDA
UNIT		AN INTRODUCTION TO OPENCL				9
Kerne	l Launch,	n Model, Device Architecture, Kernel Functions, Device Electrostatic Potential Map in OpenCL	Mar	nage	ment	
UNIT		PARALLEL PROGRAMMING WITH OPENACC				-
Paralle	el Constr	sus CUDA C, Execution Model, Memory Model, Basic Ope uct, Loop Construct, Kernels Construct, Data Manageme nd Data Transfer.				
.			PER	RIOD	S	
		COMES: on of this course, the students will be able to:			_	
CO1		knowledge of GPU computing, including the architecture lution of graphics pipelines, and parallel programming				
CO2		strate an understanding of the concepts and principles of C programming, and the execution models of CUDA and C			arallel	ism,
CO3	Apply t applicat	he CUDA programming model to develop parallel p ions, such as vector addition and matrix multiplication.	rogr	rams		
CO4	efficience	the performance and efficiency of GPU programs, includir by and resource allocation strategies.				
CO5		and implement parallel solutions using CUDA C, OpenC				

Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Sanders, J. and Kandrot, E., CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley Professional (2017) 4th Edition.
- 2. Kirk, D. and Hwu, M., W., Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2016) 3rd Edition.
- 3. Hwu, M., W., A GPU Computing Gems Emerald Edition (Applications of GPU Computing Series), Morgan Kaufmann (2011) 1st Edition.

COs			PO	s		
COS	1	2	3	4	5	6
1	1	1	1	-	1	1
2	1	1	1	-	1	1
3	1	1	1	-	1	1
4	1	1	1	-	1	1
5	1	1	1	-	1	1
Avg	1	1	1	-	1	1

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR301	18	INDUSTRIAL INTERNET OF THINGS	L	Т	Р	С
			3	0	0	3
COUR	SE OBJ	ECTIVES:				
1.		ide an overview of Industry 4.0 and its significance in	the d	igitaliz	ation	and
		ed economy.				
2.		erstand the concepts and components of the Internet o	of Thir	igs (Ic	oT) an	d its
-		ions in industrial settings.				
3.		lore the protocols and standards used in IoT and t	heir r	ole in	enal	oling
_		ss communication and interoperability.				
4.		nine the role of cloud computing in supporting IoT sys a for predictive analytics and smart business.	stems	and I	evera	ging
5.		yze and discuss the challenges, opportunities, and er	norair	a tro	nde in	tho
5.		entation of Industry 4.0 and IoT in different industries	nergii	ig ite		
		INDUSTRY 4.0				9
		nd the Networked Economy - Introduction to Industry	4.0 -	Com	pariso	-
		actory and Today's Factory - Internet of Things (IoT) -				
		Smart Devices and Products - Smart Logistics - Support				
		vsical Systems Requirements - Data as a New Resource				
		ing - Trends of Industrial Big Data and Predictive	Anal	ytics	for S	mart
		itecture of Industry 4.0.				<u> </u>
UNIT I		IOT AND ITS PROTOCOLS	14/.1	0.011		9 (1aT
		Functional Requirements – Motivation – Architecture -				
		T Applications – Four Pillars of IoT – DNA of IoT - The articipation in the Internet of Things. Middleware				
		n Middleware for IoT – IoT Information Security. IIoT Re				
		dustrial Internet Systems - Access Network Techn				
		n for IoT – Efforts – M2M and WSN Protocols – SCADA				
		oT Standardization – Unified Data Standards – Protoco				
– BAC	Net Pro	otocol – Modbus –KNX –Zigbee Architecture – Netwo	ork lay	er AF	'S lay	er –
Securit						
UNIT I		CLOUD COMPUTING				9
		s versus Internet of Things – Two Pillars of the				
		n for WoT – Platform Middleware for WoT – U				
		WoT Portals and Business Intelligence. Cloud of TI ng – Cloud Middleware – Cloud Standards – Cloud Pr				
		Computing – The Cloud of Things Architecture and Da				ems
UNITI		INTEGRATED IOT		laiyile	0	9
-		ng Solutions in the Internet of Things Business Mode	els for	the I	nterne	
		ork Dynamics: Population Models – Information Cascad				
		amics: Structural Models - Cascading Behavior in Ne	twork	s - Th	ne Sm	nall -
	Phenom					
		APPLICATIONS				9
		Internet of Things for Increased Autonomy and Agility				
		vironments - Resource Management in the Internet of T	•			
		n and Software Agents - Industry 4.0 in Car Manufactu – IOT Based Building Automation - Agricultural Automa			ronics	\$
IVIAITUI	acturing	<u> </u>	45 PE		S	
COUR	SF OUT	COMES:	-TJ F L			
		on of this course, the students will be able to:				
CO1		knowledge of Industry 4.0, IoT, cloud computing, and	their a	archite	ecture	S.
	•	ds, and protocols.				- 7
CO2		strate comprehension of the concepts, pillars, and requ	ireme	ents of	Indu	stry
		IoT, including their impact on the networked economy				•
	product	ion environments.			0	
					HILL	sled

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	-1								
CO3									n designing
			g IoT solut						
CO4									ectures in IoT
			, and evalu	ate the b	ousiness r	nodels a	nd netwo	ork dyna	imics
	associate								
CO5									anagement,
			increased						
		U .	electronics	manufact	turing, bu	ilding aut	tomation	, and ag	pricultural
	automati	on.							
	ERENCES								
	lasdair Gilo								
	•		•		•		n Netwo	orks: An	Engineering
	pproach", N								
									Networks- on
	hips: Theor								
				a Benini,	"Networ	ks on Ch	nips: Tec	chnology	/ and Tools",
	lorgan Kau								
									erence Guide
	or Industry 4								
								ynthesis	Lectures on
	omputer A								
					s, Princi	ples and	Practice	es of ini	erconnection
IN	etworks", N	lorgan	Naumann,	2004.		1.	_		
		-			POs]
		COs	1	2	3	4	5	6	
		1	1 1 7	1	2	Z- 3	100	2	
		2	1	1	2	1	1	2	
		3	1	1	3	1	1	2	
		4	1	1	2	1	1	2	
		5	1	1	2	1	1	2	
		Avg	1	1-	2.2	1	1	2	
	•	_	>			11			-
							~		
							\sim		

PROGRESS THROUGH KNOWLEDGE

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3019	HUMAN MACHINE INTERFACE	L	Т	Ρ	С
		3	0	0	3
COURSE OBJ			•		
	vide an introduction to Human Machine Interface (HMI				
	iliarize students with the elements and consideration	s of F	HMI d	esign	and
	entation.				
	lore perception, memory, and cognition principles relev				
	oduce an integrated modeling framework for supervisor	y con	trol ar	na nun	nan-
	e cooperation.	thair	annlia	otiono	
5. To disc	uss Brain-Computer Interface (BCI) technologies and INTRODUCTION TO HMI	their a	applic	alions	
	uman Computer Interaction as an emerging field - Ap	onling	tiona	of Llu	9
	ace (HMI) - HMI types - Human Information Processi				
	sign Interaction -strategies Interface metaphors and co				
	Wide Web HCI - security Accessibility of User				
	d evaluation HCI and social computing.	inter	laces	050	Jinty
	ELEMENTS OF HMI				9
-	Considerations -HMI Hardware Selection -HMI S	Softwa	are S	electio	-
	stem Communications - Passive and active – Mental m				
	Programming Considerations - Creating Basic Graphic				
	t controlled interface.				
2					
UNIT III	PERCEPTION, MEMORY, COGNITION				9
	Cognition - Visual System – Image Generation an				
	Human Processor- STM, LTM, Chunking - Principles			on- Po	ower
Law - Fitts Law	- Hicks Law – Factors Affecting - Perception, Memory	, Cog	nition		
			•		9
	ntrol – Criteria for Sharing Task between Operator and				
	eration - Human-Machine Cooperation - Generic				
	ar Driver Cognitive Architecture of the Human Cognit I Module – HMI in Automation.	ive 5	ysten	i - Co	ntroi
UNIT V	BRAIN COMPUTER INTERFACE				9
	BCI – Brain Regions and Responsibilities - Active Me	othode	e for l	Moasi	-
	Invasive and Non-Invasive Procedures - EEG – P300				
	Prosthetic Control - Neurorehabilitation – Neurotrainir				
Wheel Chairs		'9 L	Juli	oonat	nou
	PROGRESS THROUGH KNOWLEDGE				
TOTAL		45 PE	RIO	S	
COURSE OUT					
Upon completion	n of this course, the students will be able to:				
		omor	/. coa	nition	and
	knowledge of HCI principles, HMI types, perception, m	ennory			aa
	knowledge of HCI principles, HMI types, perception, me effective design and operation of human-machine inter	•	•		
BCI for		faces			
BCI for Demon	effective design and operation of human-machine inter	faces g cons	sidera	tions,	and
BCI for Demon	effective design and operation of human-machine inter strate comprehension of HCI principles, HMI interfacing act of perception, memory, and cognition on HM	faces g cons	sidera	tions,	and
BCI for CO2 Demon the imp experie	effective design and operation of human-machine inter strate comprehension of HCI principles, HMI interfacing act of perception, memory, and cognition on HM	f <u>aces</u> g cons //I de	sidera sign	tions, and	and user
CO2 BCI for the imperie CO3 Apply	effective design and operation of human-machine inter strate comprehension of HCI principles, HMI interfacing act of perception, memory, and cognition on HM nce.	faces g cons //I de integr	sidera sign ated	tions, and mode	and user eling
CO2 Demon the imp experie CO3 Apply framew friendly	effective design and operation of human-machine inter- strate comprehension of HCI principles, HMI interfacing act of perception, memory, and cognition on HM nce. HCI principles, usability engineering techniques, orks, and control loops to design and develop effect interfaces and system communications.	faces g cons /I de integr tive F	sidera sign ated IMIs	tions, and mode with u	and user eling ser-
CO2 Demons the imp experie CO3 Apply framew friendly CO4 Analyze	effective design and operation of human-machine inter- strate comprehension of HCI principles, HMI interfacine bact of perception, memory, and cognition on HM nce. HCI principles, usability engineering techniques, prks, and control loops to design and develop effect interfaces and system communications. the role of HCI in security, accessibility, and social com-	faces g cons Al de integr tive F	sidera sign ated IMIs	tions, and mode with u	and user eling user- uate
CO2 BCI for the imp experie CO3 Apply framew friendly CO4 Analyze the imp	effective design and operation of human-machine inter- strate comprehension of HCI principles, HMI interfacing act of perception, memory, and cognition on HM nce. HCI principles, usability engineering techniques, orks, and control loops to design and develop effect interfaces and system communications. the role of HCI in security, accessibility, and social con- act of perception, memory, cognition, and different E	faces g cons Al de integr tive F	sidera sign ated IMIs	tions, and mode with u	and user eling user- uate
CO2 BCI for the imp experie CO3 Apply framew friendly CO4 Analyze the imp	effective design and operation of human-machine inter- strate comprehension of HCI principles, HMI interfacine bact of perception, memory, and cognition on HM nce. HCI principles, usability engineering techniques, prks, and control loops to design and develop effect interfaces and system communications. the role of HCI in security, accessibility, and social com-	faces g cons Al de integr tive F	sidera sign ated IMIs	tions, and mode with u	and user eling user- uate

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COS	,		•	• •		•		•	n, and BCI to sing complex
				•					trends and
		nologies.			igeo une	moorpo	rading of	norging	
RFF	ERENC	0							
1.	-	-	nan Machir	e Interac	tive Syste	ems" Nev	w York [.] F	Plenum I	Press, 2013.
2.									r Interfaces",
2.		er-Verlag Be						omputo	
3.						chine Inte	eraction"	Ashqat	e Publishing
0.	Limited	•					, indexed of	, tongut	e i abilerning
4.		,	Human-Ma	chine Inte	erface De	sian for F	Process (Control A	Applications",
		blisher, 200				eignieri			ipplicatione ,
5.		,		Winter W	Volpaw. "	Brain Co	mputer li	nterface	s: Principles
•		actice", Oxfo			•				
		, -	_	,	-				
					DO				
		<u> </u>			POs	5			
		COs	1	2	3	s 4	5	6	
		COs 1	1	2 1			5	6 2	
			1 1 1	2 1 1	3		5 - 1		
		1	1	1	3 2	4 -	5 - 1 1	2	-
		1 2	1	1 1	3 2 2	4 -	5 - 1 1 1	2 2	
		1 2 3	1 1 1	1 1	3 2 2 3	4 - 1 1	5 - 1 1 1 1 1	2 2 2	
		1 2 3 4	1 1 1 1	1 1	3 2 2 3 2	4 - 1 1 1	5 - 1 1 1 1 1 1	2 2 2 2	

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

SE OBJECTIVES: To understand the principles and design of PID controllers an methods. To explore and apply advanced control techniques such as fe	3 d vario	0	0	3
To understand the principles and design of PID controllers an methods. To explore and apply advanced control techniques such as fe	d vario	ous tu		•
methods. To explore and apply advanced control techniques such as fe	d vario	ous tu		
To explore and apply advanced control techniques such as fe		040 14	ning	
			Ū	
	ed-for	ward,	casca	ade,
inferential, and sliding mode control.				
To gain proficiency in state space analysis and design control	syste	ms us	sing st	ate
observers.	-		-	
To analyze and handle nonlinear systems by linearization, sta	bility a	analys	sis, an	d
phase portrait analysis.				
To familiarize with other control methods including LQR, adapt	tive co	ontrol,	, optin	nal
				9
, ,				
0				
	d Dam	nped	Oscilla	ation
				9
		- Split	t-Ranę	je –
	uning			
				9
	ontro	i Sys	tems	with
	vinctio	un of	Naali	9
	Jilly C	oncep	JI – PO	JDOA
				9
		lictivo	Cont	-
			Com	101 -
	45 PF)S	
Understand feedback systems PID controllers Tuning	and c	liffere	nt co	ntrol
	effectiv	venes	s.	
				nent
Design control systems with observers, develop control st	ategie	es for	nonli	near
systems and integrate multiple control techniques for multivar				
	control, robust control, and model predictive control. CONTROLLER AND PERFOMANCE MEASURES of Feedback Systems and Design of PID Controllers - Elect PID Algorithm – Auto/Manual Transfer - Reset Windup – Pillers - Evaluation Criteria – IAE, ISE, ITAE And ¼ Decay F s Reaction Curve Method, Continuous Cycling Method and a – Pole Placement – Lambda Tuning. ENHANCEMENT TO SINGLE LOOP CONTROL forward- Ratio Control – Cascade Control – Inferential Cole forward- Ratio Control – Cascade Control – Inferential Cole fe Control – Selective Control – Sliding Mode Control - Auto Til STATE SPACE ANALYSIS Ots of State Variable and State Model – State Space to T er Function to State Space Modes – Solving Time Invaria Ilability – Observability – State Observers – Design of C vers. V NONLINEAR SYSTEMS AND CONTROL near Systems – Common Physical Nonlinearities – Linea nas – Phase Portrait Analysis – Isocline Method – Liapnov's State on – Kalman Algorithm. V OTHER CONTROL METHODS Adaptive Control – Optimal Control – Robust Control – Mode riable Control systems. SE OUTCOMES: ompletion of this course, the students will be able to:	control, robust control, and model predictive control. CONTROLLER AND PERFOMANCE MEASURES of Feedback Systems and Design of PID Controllers - Electronic I PID Algorithm – Auto/Manual Transfer - Reset Windup – Practical lers - Evaluation Criteria – IAE, ISE, ITAE And ¼ Decay Ratio s Reaction Curve Method, Continuous Cycling Method and Darr 1 – Pole Placement – Lambda Tuning. ENHANCEMENT TO SINGLE LOOP CONTROL forward- Ratio Control – Cascade Control – Inferential Control - le Control – Selective Control – Sliding Mode Control - Auto Tuning I STATE SPACE ANALYSIS Data of State Variable and State Model – State Space to Transfer er Function to State Space Modes – Solving Time Invariant St Ilability – Observability – State Observers – Design of Contro rers. V NONLINEAR SYSTEMS AND CONTROL near Systems – Common Physical Nonlinearities – Linearizations – Phase Portrait Analysis – Isocline Method – Liapnov's Stability Control – Kalman Algorithm. V OTHER CONTROL METHODS Adaptive Control – Optimal Control – Robust Control – Model Precentiable Control systems. Model Sciences 45 PE Se OUTCOMES: Optimal Control – Robust Controller, Tuning and contendos. Interpret performance me	control, robust control, and model predictive control. CONTROLLER AND PERFOMANCE MEASURES v of Feedback Systems and Design of PID Controllers - Electronic PID C PID Algorithm – Auto/Manual Transfer - Reset Windup – Practical Fornillers - Evaluation Criteria – IAE, ISE, ITAE And ¼ Decay Ratio – Tur s s Reaction Curve Method, Continuous Cycling Method and Damped G - Pole Placement – Lambda Tuning. ENHANCEMENT TO SINGLE LOOP CONTROL forward– Ratio Control – Cascade Control – Inferential Control – Splite Control – Selective Control – Sliding Mode Control - Auto Tuning I STATE SPACE ANALYSIS ots of State Variable and State Model – State Space to Transfer Fur Function to State Space Modes – Solving Time Invariant State E lability – Observability – State Observers – Design of Control Systems. V NONLINEAR SYSTEMS AND CONTROL near Systems – Common Physical Nonlinearities – Linearization of ns – Phase Portrait Analysis – Isocline Method – Liapnov's Stability Conception – Kalman Algorithm. V OTHER CONTROL METHODS Adaptive Control – Optimal Control – Robust Control – Model Predictive riable Control systems. 45 PERIOD Sec Outcomes, the students will be able to: Understand feedback systems, PID controllers, Tuning and differe methods. Interpret performance measures and evaluate PID controller effectivenes Apply tuning methods to optimize PID contro	control, robust control, and model predictive control. CONTROLLER AND PERFOMANCE MEASURES v of Feedback Systems and Design of PID Controllers - Electronic PID Control PID Algorithm – Auto/Manual Transfer - Reset Windup – Practical Forms of lers - Evaluation Criteria – IAE, ISE, ITAE And ¼ Decay Ratio – Tuning U s Reaction Curve Method, Continuous Cycling Method and Damped Oscillad 1 – Pole Placement – Lambda Tuning. ENHANCEMENT TO SINGLE LOOP CONTROL forward- Ratio Control – Cascade Control – Inferential Control – Split-Range le Control – Selective Control – Sliding Mode Control - Auto Tuning I STATE SPACE ANALYSIS ots of State Variable and State Model – State Space to Transfer Function per Function to State Space Modes – Solving Time Invariant State Equatic lability – Observability – State Observers – Design of Control Systems rers. V NONLINEAR SYSTEMS AND CONTROL near Systems – Common Physical Nonlinearities – Linearization of Nonli ns – Phase Portrait Analysis – Isocline Method – Liapnov's Stability Concept – Poin – Kalman Algorithm. V OTHER CONTROL METHODS Adaptive Control – Optimal Control – Robust Control – Model Predictive Contriable Control systems. SE OUTCOMES: 45 PERIODS Se OUTCOMES

Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Bequette. B.W., "Process Control Modelling, Design and Simulation", Prentice Hall of India, 2023.
- 2. Gopal. M, "Control Systems Principles and Design", Tata McGraw Hill Publishing Ltd, 2012.
- 3. Kuo. B.C, "Automatic Control Systems", Prentice Hall, 2004.
- 4. Nagrath .I.J. and Gopal, "Control System Engineering", New Age International (P) Ltd., 2006.
- 5. Ogata.K, "Modern Controls Engineering", Prentice Hall, 2010.
- 6. Zbigniew Ogonowski , "Advanced Control with MATLAB and Simulink", Ellis Horwood, Ltd, 1995

<u> </u>	POs						
COs	1	2	3	4	5	6	
1	1	1	1	2	2	1	
2	1	1	1	2	1	1	
3	1	1	1	2	2	1	
4	1	1	1	2	2	1	
5	1	1	1	2	1	1	
Avg	1	1	1	2	1.6	1	

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	1 MOTION CONTROL TECHNOLOGY	L		Т	Р	С		
00112		3	6	0	0	3		
	SE OBJECTIVES:							
	To understand the fundamental concepts and principle							
	including dynamic system modeling, control system	design, ai	nd	motic	on co	ntro		
	drives.							
	To demonstrate a deeper understanding of motion co							
	programmable automation controllers, digital/analog I/C	Ds, and inte	llig	jent m	otors	with		
	integrated drives.							
	To apply the acquired knowledge to design and config							
	select appropriate components, and program mot	tion contro	lle	rs to	r spe	CITIC		
	applications.							
	To analyze and evaluate the performance of motion				s, ide	ntify		
	potential issues or limitations, and propose solutions for							
	To integrate knowledge and skills to develop advanced motion control strategies, such as motion profiling, CAM profiling, and multi-axis control, for complex							
		ti-axis con	tro	i, tor	com	plex		
	applications.					-		
UNITI	INTRODUCTION MOTION CONTROL SYST				-	9		
	ction to Motion Control System - Dynamic System Mode							
	nentals – Parameters in Control – Actuators and Me							
•	s -Multi-Body Dynamics - Need for Motion Controll	er – Speci	tic	ation	of Mo	otion		
Control								
UNIT II						9		
	ction to Motion Controller - Programmable Automati							
	cation of Motion Controllers – Digital I/O – Analog I/O – S	Standards i	n I/	0 – I/	O Spe	cific		
	sors – Modular and Expansion Concepts - Drives	10						
UNIT III						9		
	mmable Automation Controllers – Features & Specific							
	I/O - Analog I/O - Standards in I/O - I/O Specific	to Sensor	S	— Мо	dular	and		
	sion Concepts - Drives							
UNIT IV					<u></u>	9		
	ent motors - intelligent drives - features of driv							
	nication protocols – features – Software - Programm	ning – cur	rer	nt, po	sition	and		
	oops – Application in robots and portable systems							
UNIT V						9		
	131 standards and Its Programming Languages over							
	Diagram – PLC Open - Motion Planer - PID - Servo							
A coolor	ration and Torque Profiling – CAM Profiling – Multi- A	is Motion (Co	ntrolle	ers – (CNC		
Machine	es – Robot case study							
Machine TOTAL	es – Robot case study	45	PE	RIOD	S			
Machine TOTAL COURS	es – Robot case study SE OUTCOMES:	45	PE	RIOD	S			
Machine TOTAL COURS Upon co	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to:							
Machine TOTAL COURS Upon co CO1	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle							
Machine TOTAL COURS Upon co CO1	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems.	s, and com	ро	nents	of mo	otion		
Machine TOTAL COURS Upon co CO1	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature	s, and com	po n c	nents ontrol	of mo	otion		
Machine TOTAL COURS Upon co CO1 1 CO2 5 i	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os	s, and com	po n c	nents ontrol	of mo	otion		
Machine TOTAL COURS Upon co CO1 1 CO2 3 i i	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature	s, and com	po n c	nents ontrol	of mo	otion		
Machine TOTAL COURS Upon co CO1 1 CO2 5 i i	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os	s, and com s of motior , and intell	po n c ige	nents ontrol ent me	of mo syste otors	otion ems, with		
Machine TOTAL COURS Upon co CO1 1 CO2 3 i CO3 7	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os integrated drives.	s, and com s of motior , and intell	po n c ige	nents ontrol ent me	of mo syste otors	otion ems, with		
Machine TOTAL COURS Upon co CO1 1 CO2 3 i i CO3 3	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os integrated drives. Apply the acquired knowledge to design and configur	s, and com s of motior , and intell e motion c	po ige	nents ontrol ent me	of mo syste otors /stems	otion ems, with s for		
Machine TOTAL COURS Upon cc CO1 1 CO2 3 i CO3 4 CO3 4	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os integrated drives. Apply the acquired knowledge to design and configur specific industrial applications. Analyze and evaluate the performance of motion control	s, and com s of motior , and intell e motion c rol systems	po ige	nents ontrol ent me	of mo syste otors /stems	otior ems, with s for		
Machine TOTAL COURS Upon co CO1 CO2 i i CO3 / S CO4 / i	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os integrated drives. Apply the acquired knowledge to design and configur specific industrial applications. Analyze and evaluate the performance of motion contr issues or limitations, and propose solutions for improve	s, and com s of motior , and intell e motion c rol systems ement.	po ige oni	nents ontrol ent mo trol sy dentify	of mo syste otors vstems / pote	ems, with s for		
Machine TOTAL COURS Upon cc CO1 CO2 i CO3 CO4 CO5	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os integrated drives. Apply the acquired knowledge to design and configur specific industrial applications. Analyze and evaluate the performance of motion control issues or limitations, and propose solutions for improve Develop and implement advanced motion control	s, and com s of motior , and intell e motion c rol systems ement. strategies,	po ige oni	nents ontrol ent me trol sy dentify uch a	of mo syste otors /stems / pote	ems, with s for ntia		
Machine TOTAL COURS Upon co CO1 1 CO2 3 i CO2 3 i CO3 4 i CO3 4 i CO3 4 i CO3 4 i CO3 4 i CO4 1 i	es – Robot case study SE OUTCOMES: ompletion of this course, the students will be able to: Recall and explain the fundamental concepts, principle control systems. Summarize and interpret the architecture and feature including programmable automation controllers, I/Os integrated drives. Apply the acquired knowledge to design and configur specific industrial applications. Analyze and evaluate the performance of motion contr issues or limitations, and propose solutions for improve	s, and com s of motior , and intell e motion c rol systems ement. strategies,	po ige oni	nents ontrol ent me trol sy dentify uch a	of mo syste otors /stems / pote	ems with s for ntia		

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. M. Nakamura.S. Gata& N. Kyura, Mechatronic Servo System Control, Springer, 2014.
- 2. Sabanovic Asif, Motion Control Systems, John Wiley & Sons Inc, 2011
- 3. Model 4000 indexer user Guide, Parker Hannifin Corporation, 1994.
- 4. 2-Axis Motion Controller User Guide, Parker Hannifin Corporation, 1995.
- 5. Operating instructions Compax3 T30 Programmable motion control according to IEC61131-3, Parker Hannifin Corporation, 2008.
- 6. Programming with Easy Motion Studio User's Manual, online, technosoftmotion.com.
- 7. Technical Reference, IPOS4808 BX-CAT-STO Intelligent Servo Drive for Step, DC, Brushless DC and AC Motors, Techno soft, 2022.

COs	POs						
COS	1	2	3	4	5	6	
1	1	1	2	2	1	2	
2	1	1	2	2	1	2	
3	1	1	3	2	1	2	
4	1	1	2	2	1	2	
5	2	1	1	2	1	2	
Avg	1.2	1	2	2	1	2	

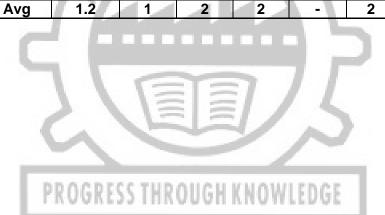
DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	52	DIGITAL TWIN AND INDUSTRY 5.0	L	T	Р	<u>C</u>
			3	0	0	3
		ECTIVES:	taltu	in too	hnolo	~ ~ ~
1. 2.		rstand the fundamental principles and concepts of digi				Jy.
		/ digital twin techniques to analyze and optimize compl				ر م سا ما
3.		lop skills in designing and implementing digital twin r	noaei	s tor	real-w	/oria
4.	applicat	uate the benefits and limitations of digital twin te	ohnol			iouo
4.	industrie	•	CHHOI	ugy i	ii vai	ious
5.		ally analyze and interpret data obtained from digital twi	in cim	ulatio	20	
UNIT I		INTRODUCTION	11 5111	uialiu	115.	9
-		efinition, types of Industry and its key requirements, Im	norta		nnlier	-
of Digi industi Param	ital Twin ry innova	in process, product, service industries, History of Digi tion, Technologies/tools enabling Digital Twin – Virtual (eal time systems – control Parameters – Handshakin	tal Tv CAD N	vin, D ⁄lodel	TT ro s – co	le in ntrol
						9
		ete Industry, Trends in the discrete industry, control sy	stem	requir	emen	-
		stry, Digital Twin of a Product, Digital Thread in Dis				
		alysis for product & production improvements, Automati				
Enterp				naiati	0.1, 2.	gnai
		DIGITAL TWIN IN A PROCESS INDUSTRY				9
		ess Industry, Trends in the process industry, control system	stem	reauir	emen	_
		try, Digital Twin of a plant, Digital Thread in process Ind				
•		or process improvements, process safety, Automatic				
Enterp	•		ê		,	0
		INDUSTRY 5.0				9
manuf require UNIT	acturing, ements – V	rete industries, Benefits of Industry 5.0, challenges in Internet of Things 5.0, Industrial Gateways, Basics cognitive systems 5.0 ADVANTAGES OF DIGITAL TWIN	s of	Comn	nunica	ation
and im	nprove ef	n product quality, production process, process Safety iciency, achieve flexibility in production, continuous pre-				
		ess through Simulation, reducing the time to market.			<u>``</u>	ig of
		ess through Simulation, reducing the time to market.	45 PE	RIOL	12	ig of
	completio	ess through Simulation, reducing the time to market. TOTAL	45 PE	RIUL	12	ig of
		COMES: on of this course, the students will be able to:				ig of
CO1	Recall a	COMES: on of this course, the students will be able to: nd explain the key principles and concepts of digital tw	/in tec	hnolc		ng of
CO2	Recall a Apply di	ess through Simulation, reducing the time to market. TOTAL COMES: on of this course, the students will be able to: nd explain the key principles and concepts of digital tw gital twin techniques to model and simulate complex sy	vin teo ysterr	hnolc		
CO2 CO3	Recall a Apply di Design	ess through Simulation, reducing the time to market. TOTAL COMES: In of this course, the students will be able to: Ind explain the key principles and concepts of digital two gital twin techniques to model and simulate complex so and implement digital twin models for specific application	vin teo ystem ons.	chnolc Is.		
CO2	Recall a Apply di Design Evaluate	COMES: n of this course, the students will be able to: nd explain the key principles and concepts of digital tw gital twin techniques to model and simulate complex sy and implement digital twin models for specific application the effectiveness of digital twin technology in improvi	vin teo ystem ons.	chnolc Is.		
CO2 CO3	Recall a Apply di Design Evaluate perform	Sess through Simulation, reducing the time to market. TOTAL COMES: on of this course, the students will be able to: nd explain the key principles and concepts of digital two gital twin techniques to model and simulate complex sy and implement digital twin models for specific application the effectiveness of digital twin technology in improvious ance and efficiency.	<u>vin teo</u> ystem ons. ng sys	chnolo is. stem	ogy.	
CO2 CO3 CO4 CO5	Recall a Apply di Design Evaluate perform Analyze decisior	tess through Simulation, reducing the time to market. TOTAL COMES: on of this course, the students will be able to: nd explain the key principles and concepts of digital two gital twin techniques to model and simulate complex sy and implement digital twin models for specific application to the effectiveness of digital twin technology in improvin- ance and efficiency. and interpret data generated from digital twin simulations.	<u>vin teo</u> ystem ons. ng sys	chnolo is. stem	ogy.	
CO2 CO3 CO4 CO5 REFE	Recall a Apply di Design Evaluate perform Analyze decisior	ress through Simulation, reducing the time to market. TOTAL COMES: on of this course, the students will be able to: nd explain the key principles and concepts of digital two gital twin techniques to model and simulate complex sy and implement digital twin models for specific application the effectiveness of digital twin technology in improving ance and efficiency. and interpret data generated from digital twin simulations.	vin teo ystem ons. ng sys	stem	egy.	med
CO2 CO3 CO4 CO5 REFEI 1.	Recall a Apply di Design Evaluate perform Analyze decisior RENCES Alp Us Transfo Andrew Manufa Uthayar	tess through Simulation, reducing the time to market. TOTAL COMES: on of this course, the students will be able to: nd explain the key principles and concepts of digital two gital twin techniques to model and simulate complex sy and implement digital twin models for specific application to the effectiveness of digital twin technology in improvin- ance and efficiency. and interpret data generated from digital twin simulations.	vin teo ystem ons. ng sys ons to anagir Switz I Twir	stem make	e infor e Di d, 201 ren Si	med gital 8 mart
CO2 CO3 CO4 CO5 REFEI 1. 2. 3.	Recall a Apply di Design Evaluate perform Analyze decisior RENCES Alp Us Transfo Andrew Manufa Uthayar 2022.	tundag and Emre Cevikcan, "Industry 4.0: Marmation", Springer Series in Advanced Manufacturing., Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digita turing", Elsevier Science., United States, 2019	vin teo ystem ons. ng sys ons to anagir Switz I Twir conor	stem make ng th zerlan n Driv	e infor e Di d, 201 ren Si RC Pr	med gital 8 mart ess,

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 5. Christoph Jan Bartodziej, "The Concept Industry 4.0 an Empirical Analysis of Technologies and Applications in Production Logistics", Springer Gambler., Germany, 2017.
- 6. Ibrahim Garbie, "Sustainability in Manufacturing Enterprises, Concepts, analyses and assessments for Industry 4.0", Springer., Switzerland, 2016.
- 7. Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018
- 8. Ulrich Sendler, "The Internet of Things, Industries 4.0 Unleashed", Springer., Germany, 2018

<u> </u>	POs						
COs	1	2	3	4	5	6	
1	1	1	2	1	1	2	
2	1	1	2	2	1	2	
3	1	1	3	2	1	2	
4	2	1	2	1	1	2	
5	1	1	1	2	1	2	
Avg	1.2	1	2	1.6	1	2	



DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	22	MECHATRONICS IN MANUFACTURING SYSTEMS	L	Т	Р	С
			3	0	0	3
COUR		ECTIVES:				
1.		erstand the principles and functioning of uncon es and additive manufacturing.	ventic	onal	machi	ning
2.	To apply	v knowledge of mechatronics to analyze and operate ad ent and processes.	dditive	e man	ufactu	ıring
3.		te CAD models and utilize reverse engineering t	echni	aues	for r	apid
0.		ing and additive manufacturing.	COIIII	quoo		apia
4.		yze the different liquid-based and solid-based ad	ditive	man	ufactu	ıring
5.		es, their strengths, weaknesses, and applications.	ina ta	ohnic		thoir
э.		uate the powder-based and other additive manufactur ies, and material systems.	ing te	ecnnic	jues,	Ineir
UNIT		UNCONVENTIONAL MACHINING PROCESSES				9
Archite	ecture – k	Key Elements of Mechatronics in USM – EDM – WCED) M – M	MEDN	/ – EC	DM
		– ĹBM – IBM – PAM – AJM – WJM.				
UNIT		INTRODUCTION TO ADDITIVE MANUFACTURIN				9
Need ·	 Classific 	ation of AM Processes – SLA – SLS – FDM – LOM –	SGC	– PLT	– LEI	NS -
Archite	ecture of	Additive Manufacturing Equipment - Key Elements	s of l	Mecha	atronio	cs –
Functi	ions Deve	elopment of AM Systems – AM Process Chain - Impa	ict of	AM o	n Pro	duct
Develo	opment -	Virtual Prototyping - Rapid Tooling – RP to AM				
UNIT		REVERSE ENGINEERING AND CAD MODELLING				9
Basic	Concept	- Digitization Techniques - Model Reconstruction -	Data	Proc	essing	g for
Rapid	prototypi	ng: CAD Model Preparation, Data Requirements -	Geom	netric	Mode	lling
Techn	niques: W	ireframe, Surface and Solid Modelling - Data Forma	ts - D	ata Ir	nterfac	cing,
Part C	Drientatior	and Support Generation, Support Structure Design,	, Mod	lel Sli	cing, i	Tool
		n - Software for AM.			0.	
UNIT	IV	LIQUID AND SOLID BASED ADDITIVE MANUFAC	TURI	NG		9
Stereo	o-Lithogra	phy Apparatus (SLA): Principle, Pre-Build Process, Pa	art-Bu	ilding	and F	'ost-
Build p	processes	s, Photo Polymerization of SL Resins, Part Quality ar	nd Pro	cess	Planr	ning,
		es, Materials, Advantages, Limitations and Applica				
	•	Working Principle, Process, Strengths, Weaknesses an				
		delling (FDM): Principle, Details of Processes, Proce				
		rials and Applications. Laminated Object Manufactur				
		ails of Processes, Products, Materials, Advantag				
Applic			00, L			ana
		POWDER BASED AND OTHER ADDITIVE MANUF		JRIN	G	9
		r Sintering (SLS): Principle, Process, Indirect and	_			-
		terials, Post Processing, Surface Deviation and Acc				
		ed Net Shaping (LENS): Processes, Materials, Pr				
		Applications -Three-Dimensional Printing (3DP): Printing				
		, and Types of Printing, Process Capabilities, and M				
		Based and Powder Based 3DP Systems, Shape Depo				
		Particle Manufacturing (BPM), Selective Laser Mel				0
Meltin		, Tancie Manufacturing (DI M), Selective Laser Mel	ung,			Jam
WCIIII	<u>y</u> .	TOTAL	45 PF	RIOD)S	
COUR					-	
Upon	completic	n of this course, the students will be able to:				
CO1	Demons	trate an understanding of the principles and key element of processes and additive manufacturing.	nts of	unco	nventi	onal
CO2		nechatronics principles to operate and control ad	ditive	man	ufactu	irina
502	equipme			man	alaott	
CO3		CAD models and utilize reverse engineering tech	nnique	es fo	r add	itive
		cturing processes.	-1-1-1		Atte	sted

the P DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

CO4	,			ent additi	ive manu	facturing	process	es and t	heir suitabilit	У
		cific appli								
CO5			•			•			other additive	Э
			chniques f	or differe	nt mater	ials and a	applicatio	ns.		
	ERENCES									
					Rapid Pr	ototyping	: Princip	les and	Applications'	,
			olishers, 20							
			d Prototypi							
								Nethodo	ologies: Rapi	d
	••	•	t Digital M		• •	•				
			obs, P.F.,	Rapid To	oling: Te	chnologi	es and Ir	ndustrial	Applications	; ,
	CRC Pres	s, 2005								
5.	Kamrani,	A.K. and	Nasr, E.A	., "Rapic	Prototy	ping: The	eory and	Praction	ce", Springer	•,
	2006.									
							jineering	Applica	ations: A Too	Ы
			evelopmer							
7.	Pandley P	P. S. & Sh	ah. N., "Mc	odern Ma	nufacturi	ng Proce	esses", M	cGraw I	Hill Inc, 2007	
	_								-	
		COs			PO	S				
		003	1	2	3	4	5	6		
		1	1	1.	2	2		2		
		2	1	1	2	1	-	2		
		3	1.5	11-	2	1		2	1	
		4	2	1	2	3	A	2	1	
		5	1	1	2	3	10	2	1	
	F		4.0		-	ŏ			1	

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	23	MEDICAL MECHATRONIC SYSTEMS	L	Т	Р	С
			3	0	0	3
COUR		JECTIVES:	•	•	•	
1.		derstand the role of mechatronics in the field of medical	applic	ations	5.	
2.		call the functioning of human systems and their measure				
3.		bly knowledge of mechatronics principles to analyze and				
0.		peutic medical equipment.	opora		Jourig	ana
4.		alyze the functioning and principles of cardiac and regula	atory a	assist	svste	ms.
5.		aluate the different imaging techniques and their ap				
	diagn					
UNIT		INTRODUCTION TO MEDICAL MECHATRONICS				9
Role c	of Mech	atronics in Medical – Overview of Human Functional Sys	tem –	Cella	and O	rigin
		tential - Measurement of Blood Pressure - Invasive and N				0
Transo	ducers	Role in Measurement – Heart Rate – Pressure - Temper	ature	- Hear	t Sou	nd –
Pulmo	nary F	unction Measurements. ECG, EEG and EMG Systems.				
UNIT		ASSISTING AND THERAPEUTIC EQUIPMENTS				9
		Heart Lung Machine — Dialyzers - Centrifuge- Coa				
		pirometer - Nebulizer – Anesthesia Machine - Operating	Table	e – Ex	amina	ation
		usion Systems – Surgical Robots.				
UNIT		CARDIAC AND REGULATORY ASSIST SYSTEM				9
		 Defibrillators – Ventilators – Nerve and Muscle Stimu 				
		 Synchronous Counter Pulsation, assisted through 				
		ypass Pump, Left Ventricular Bypass Pump, Open Che				
		ortic Balloon Pumping Veno Arterial Pumping, Prost				
		I Problem, Biomaterials for Implantable Purposes, its				
		otripsy - Indication and Principle of Hemodialysis, M				
	ent Typ	es of Hemodialysis, Monitoring Systems, Wearable Artific	ial Kic	lney, I	mplar	nting
Type.	N /					
UNIT		MEDICAL IMAGING		. .		9
		c and Fluoroscopic Techniques – XRAY Machine - Com				
		 Ultrasonography – Endoscopy – Colonoscopy -Therr Interview - Colonoscopy -				
Syster		telemetry Systems and Patient Monitoring – PET- Intro	Juucti		מוטום	euric
UNIT V		SENSORY ASSIST DEVICES AND AUTOMATED			D	9
		fness, Hearing Aids, Application of DSP in Hearing Aids Speech Trainer. Ultra Sonic and Laser Canes, Intra				
		tile Devices for Visually Challenged - Ophthalmoscopy -				
		ders and Automated Analyzer	. OAL	. 0100	00110	51101
TOTA			45 PF		s	
		TCOMES:			-	
		tion of this course, the students will be able to:				
CO1		nstrate an understanding of the role and significance	ofr	necha	tronic	s in
		al applications.	.			
CO2		and describe the functioning of various medical measure	ment	techn	iques	and
	equip	-			-10.00	
CO3		mechatronics principles to operate and troubleshoot assi	stina	and th	nerane	eutic
		al equipment.				
CO4		ze the functioning and principles of cardiac and regulator	v ass	ist sve	stems	and
	-	pplications.	,			
CO5		ate the effectiveness and limitations of different medica	lima	aina te	echnic	ues
		ensory assist devices.				1

Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Albert M Cook and Webster J G, "Therapeutic Medical Devices", Prentice Hall Nee York, 1982.
- 2. Alfred Horowitz, "MRI Physics for Radiologists A Visual Approach", Springer Verlag Network, 1994.
- 3. Geddes L A and Baker L.E, "Principals of Applied Biomedical Instrumentation", John Wiley and Sons New York, 1989.
- 4. Jerry L.Prince and Jnathan M.Links, "Medical Imaging Signals and Systems", Pearson Education Inc., 2014
- 5. Khandpur R.S, "Hand Book of Bio-Medical Instrumentation", Tata McGraw Hill Publishing Co Ltd., 2003.
- 6. Kolff W.J., "Artificial Organs", John Wiley and Sons, New York, 1979.
- 7. Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Bio-Medical Instrumentation and Measurements", Pearson Education, 2002.

CO2	POs									
COs	1	2	3	4	5	6				
1	1	1	1	2	1	2				
2	1	1	1	2	1	2				
3	1	1	1	2	1	2				
4	1	1	1	2	1	2				
5	1	1.1	1 11/5	2	1	2				
Avg	1	MU	1	2	1	2				

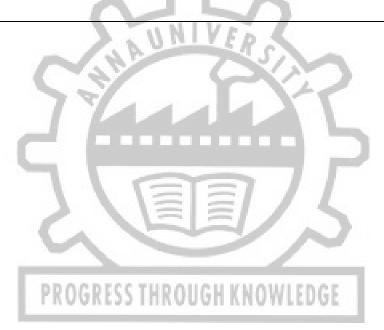
DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR302	24	BIO-MECHATRONICS	L	Т	Р	С
			3	0	0	3
COUR		ECTIVES:				
1.	To reca mechati	II the fundamental principles and vocabulary of biomec onics.	hanic	s and	bio-	
2.	To unde	erstand the relationship between mechanics and medic	ine in	the c	ontext	t of
3.	To apply	the principles of mechanics to analyze and evaluate	the m	echar	nical	
4.	To anal	es of biological tissues and fluids. yze the kinematics and kinetics relationship of the skel	etal a	nd mu	uscula	r
5.	systems To desig	s. gn and manufacture biomechatronic products by integr	rating	mech	anical	
	and elec	ctronic components.	0			
UNIT I		BIOMECHANICS				9
		Bio-Mechanics, Relation between Mechanics and Medi				
Stress	, Strain,	Shear Rate, Viscosity, Visco-Elasticity, Non-Newto	onian	Visco	osity,	Soft
		ics, Mechanical Properties of Soft Biological Tissues -				
		Biomechatronic Systems				
UNIT I	I	MECHANICS IN SKELETAL AND MUSCULAR SY	STEM			9
Bones	, Types a	and Functions - Axial and Appendicular Skeleton. Joi	nts: D	efiniti	on, Ty	/pes
		Mechanical Properties of Bones. Kinetics and Kinen				
		uscular System.				
UNITI		CONTROL MECHANISM OF BIOLOGICAL SYSTE	MS			9
		manufacturing of Biomechatronic products, Skele		Ausch	es S	
		ardio Vascular Control Mechanism, Respiratory C				
		hniques with Natural Servo Mechanism.	ontroi	INICO	11011131	
		PROSTHETIC AND ORTHOTIC DEVICES				9
				ام م ما	ام مر م	-
		and organ, Analysis of Force in Orthopedic Impla				
		Different Types of Models for Externally Powered Lim				
		mb Orthotics, and Material for Prosthetic and Orthotic				
		ulation, Sensory Assist Devices. Exoskeletons, Exol			•	
		Therapy and Rehabilitation, Wheelchairs and other Mo			tance	
UNIT		SIMULATION AND MODELLING OF BIOMECHAN				9
		Modelling and Simulation of Biological Structures - V				
		roduction to Model the Skeletal System Using Oper				
		osthesis And Normal Gait vs. Prosthesis Leg Analys	sis - U	Jpper	Extre	mity
		el – Application in Sports, exercise, entertainment.				
ΤΟΤΑ			45 PE	ERIO	DS	
		COMES:				
Upon (on of this course, the students will be able to:				
CO1		and explain the concepts, vocabulary, and principles hatronics.	of bio	mech	anics	and
CO2		strate an understanding of the relationship between me ald of biomechanics.	chanic	cs and	d medi	cine
CO3	Apply th	e principles of mechanics to analyze and evaluate the r	necha	nical	prope	rties
CO4	Analyze	iological tissues and biofluids. the kinematics and kinetics relationship of the sk	eletal	and	muso	cular
007	systems				<u> </u>	<u> </u>
CO5		and fabricate biomechatronic products by integrat ic components to solve practical problems.	ing n	necha	inical	and

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Dawson.D and Right, "Introduction to Bio-mechanics of Joints and Joint Replacement", Mechanical Engineering Publications Ltd., 1989.
- 2. Fung. Y.C, "Biomechanics: Mechanical Properties in Living Tissues", Springer Verlag, 1981.
- 3. Susan J.Hall, "Basics Bio-Mechanics", McGraw-Hill, 2002.
- 4. Gillian Pocock & Christopher D.Richards, "The Human Body", Oxford University Press, 2009.
- 5. Jacob Segil, "Handbook of Biomechatronics", Acadamic Press, 2019.
- 6. Marko Popovic, Biomechatronics, Academic Press, 2019.
- 7. Ranganathan T S, "Text Book of Human Anatomy" S. Chand and Company, 1994.
- 8. Scott L. Delp., "Open Sim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement", IEEE Transaction on Biomedical Engineering, Vol.54 No.11, 2007.
- 9. Myer Kutz, Editor, Biomedical Engineering and Design Handbook, Second Edition, Volume 1: Fundamentals, McGraw-Hill Companies, 2009
- 10. Mark J. Schulz, Vesselin N. Shanov, Yeoheung Yun, Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices, Artech House, 2009

<u> </u>			POs	5		
COs	1	2	3	4	5	6
1	1 🐊	.1	1	D-5	-	-
2	1		1	41	1	-
3	10	1	1	-1	1	- 1
4	10	1	1	1	1	1
5	1	1	1	1	1	1
Avg	1	1	_ 1	1	1	1


DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR305	3	DRONE TECHNOLOGIES	L	Т	Р	С
	•		3	0	0	3
COURS	SE OBJ	ECTIVES:	-	-	-	
		erstand the concept, vocabulary, and history of drone t	ech	nolog	v, and	d its
		on businesses.		Ŭ		
2.	To lear	n the design, fabrication, and programming of dror	nes,	inclu	uding	the
		ation of UAVs, assembling drone parts, and programmin			•	
		practical skills in drone flying and operation, including f				rone
	controls	, sensor usage, and mobile device integration.	•			
4.	To expl	ore the commercial applications of drones in various	indu	ustries	s such	ו as
		ce, logistics, agriculture, inspection, and filmmaking.				
5.	To discu	uss the future trends in drone technology, safety risks, a	viat	ion re	gulati	ons,
	miniatur	ization, autonomy, and the use of drones in swarms.				
UNIT I		INTRODUCTION TO DRONE TECHNOLOGY				9
		- Vocabulary Terminology- History of drone - Types of cu		•		
		on their method of propulsion- Drone technology impact of				
		through entrepreneurship- Opportunities/applications fo	or er	ntrepr	eneur	ship
	nployabil					
		DRONE DESIGN, FABRICATION AND PROGRAMMI				9
		of the UAV -Overview of the main drone parts- Technica				
		tion of the component parts -Assembling a drone- The end				
		Drones configurations -The methods of programming				
		I program on computer- Running Programs- Multi rotor	stat	ollizat	ion- F	light
		ONNECTION				
UNIT II			0.0	ontrol		9
		ration for drone -Flight modes- Operate a small drone in Drone controls F-light operations -management tool -S				ord
		y -Removable storage devices- Linked mobile devices a				
		DRONE COMMERCIAL APPLICATIONS		ippiic		9
-		ne based on the application -Drones in the insurance set	ctor	- Dror	nes in	-
		parcels and other cargo- Drones in agriculture- Drones i				
		es and power distribution -Drones in filming and panorar				
UNIT V		FUTURE DRONES AND SAFETY				9
		s- Guidelines to fly safely -Specific aviation regulation ar	nd s	standa	ardizat	
		Miniaturization of drones- Increasing autonomy of drones				
in swar						
TOTAL	-	55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i PE	RIOD	S	
COURS	SE OUT	COMES:				
		on of this course, the students will be able to:				
CO1	Recall a	nd explain the concepts, vocabulary, and historical dev	/elo	omen	t of di	rone
	technolo					
CO2	Analyze	and evaluate the design, fabrication, and programming	asp	ects	of dro	nes,
		trating technical knowledge of drone components and th				
		strate practical skills in flying and operating drones, inclue				0
		odes, controlling drones, utilizing sensors, and integrating				
		nowledge of drone technology to identify and discus				
		ions of drones in various industries, evaluating their bene				
		e and discuss the future trends and safety consid				
	technolo	ogy, demonstrating an understanding of aviation regulatio	ns,	minia	turiza	tion,
	autonon	ny, and swarm usage.				

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", John Wiley & Sons, Inc, 2021.
- 2. Terry Kilby and Belinda Kilby, "Make: Getting Started with Drones ", Maker Media, Inc,2016.
- 3. John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016
- 4. Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

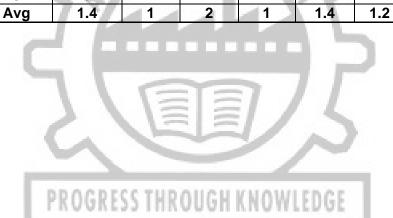
<u> </u>			PO	s		
COs	1	2	3	4	5	6
1	1	1	1	3	-	1
2	1	1	3	2	-	1
3	1	1	2	2	-	1
4	1	1	3	2	-	2
5	1	1	1	2	-	2
Avg	1	1	2	2.2	-	1.4
			6 A A			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MD204	25			т	P	<u> </u>
MR302	23	MARINE ROBOTICS	L 3	<u>Т</u> 0	Р 0	С 3
COLIP		ECTIVES:	ა	U	U	ა
1.		erstand the different types of marine vehicles, includin	a thai	r fund	tions	and
	applicat	ions.	•			
2.		yze the design and construction principles of submers	sibles	, RO\	/s, Al	JVs,
3.		uate the control systems and simulation technique	s us	ed in	remo	otelv
•		d and autonomous underwater vehicles.				,,
4.		mine the operational considerations, safety measur	es, a	nd c	ertifica	ation
		nents for manned submersibles.	,			
5.	To app	ly knowledge of marine vehicle design and techno	logie	s to	real-w	/orld
	applicat	ions in the marine industry.				
UNIT I		MARINE VEHICLES				9
Types applica	•	ral – by function – commercial marine vehicles- s	ubme	rsible	s typ	es -
UNIT I		SUBMERSIBLES				9
		nmanned submersibles – towed vehicles – gliders – c	rawle	r – D	esign	and
constr		, and the second s				
UNIT I		REMOTELY OPERABLE VEHICLE (ROV)				9
Remot	tely Oper	able Vehicles (ROV) – The ROV business – Design the	eory a	and st	andar	ds –
		ulation - design and stability - components of ROV - a	pplica	ations		
UNIT I		AUTONOMOUS UNDERWATER VEHICLE (AUV)				9
	•	and construction – components – sensors – Navigation	-con	trol st	rategi	es –
applica						
UNIT		MANNED SUBMERSIBLE				9
		Design and operational consideration - pressure				
		rim – maneuvering and control – Life support and hab	itabili	ty – e	merge	ency
uevice	s and eq	uipment's – certification and classification	-	45	PERIC	פחר
COUR	SE OUT			43		103
		on of this course, the students will be able to:				
		ize and describe the various types of marine vehicles a	nd th	eir an	plicati	ons
CO2		the design and construction principles of submersible				
		submersibles.	,	- / -	-,	
CO3	Apply c	ontrol systems and simulation techniques to design a	nd op	perate	remo	otely
	operate	d and autonomous underwater vehicles.				-
CO4		the operational considerations, safety measure	s, ar	nd c	ertifica	ation
		nents for manned submersibles.				
CO5	•	e knowledge of marine vehicle design and techr	•	es to	prop	ose
D ====		ve solutions for real-world marine industry applications	•			
	RENCES		<u>.</u>			<u></u>
1.		n M. Ross, human factors for naval marine vehicle d	esign	and	opera	tion,
2.		ess,2009. D. Christ, Robert L. Wernli, Sr. "The ROV Manual A Use	r Cuit	to for	Domo	atoly (
۷.		d Vehicles", Elsevier, second edition, 2014		101 31	inem(легу
3.		A. wadoo, Pushkinkachroo, Autonomous underwater	Vehi		model	ling
5.		design and Simulation, CRC press, 2011	venit	100, I	nouel	my,
4.		K Busby, Manned Submersibles, Office of the oceano	aranh	er of	the N	av/v
	1976	Courses, married cubiticisibles, once of the oceano	graph			uvy,
5.		hawry, The ocean engineering handbook, CRC press,	2001			
6.		A Geyer, "Submersibles and their use in ocean		hv a	nd or	ean
		ring", Elsevier, 1977	-g.up	, u		
		J,,			0	

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COs		POs					
COS	1	2	3	4	5	6	
1	1	1	2	1	1	2	
2	1	1	2	1	1	2	
3	1	1	2	2	1	1	
4	1	1	2	3	1	1	
5	1	1	2	2	1	2	
Avg	1	1	2	1.8	1	1.6	



V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3026		М	ICRO	AND N	ANO S	SYSTE	MS		L	T	Ρ	(
COURSE									3	0	0	3
		erstand the f	undam	ontal c	oncon	nte and	1 princi	inles of	fnano	tochn		/ an
	EMS.		unuan		Jonicep			ipies u	mano	CONTR	Jiog	yan
		knowledge of	of vario	ous me	thods	and te	chniqu	les use	d for r	nano s	struc	turin
	•	hesis of nan					•					
3. To	deve	op an under	standir	ng of the	e prope	erties a	and cha	aracteri	stics o	f nano	mat	eria
		r applications										
		ire skills in			graphy	y and i	microm	nachinii	ng pro	cesse	s us	ied i
		d nano fabri					10	d the sta	!(- l-	····		
	plicati	iarize with t	ne ma	teriais	used I		vis and	a their	suitad	ollity to	or sp	Decit
		INTRODUC						CHNO		,		
		notechnolog									and	
		erties - Sci										
		- Photolitho										
Processin		verview of Ma										ers
UNIT II		CHARACT										
		Applications										
		R Scanning										
		scopy, Sca										
		hniques – /									toele	ectro
Spectrosc	ору (Л	(PS), Electro	on Proc	be ivlicro	o-Anai	iyser (E	=PIMA)	- Appil	cation.			
				and the second se								
					NSOR	9		1	-			
	Tacti	MICRO AN	The second second				nd its a	applicat	tion –	Acce	eron	nete
Si Active		e Sensor -	Fabric	: Tactile	e Sen	sor an						nete
Si Active Capacitive	e Silic	e Sensor - on – Wall i	Fabric n-Tube	: Tactile e Flow	e Senso Senso	isor an or and	its ap	plicatio	on- Ine	ertial S	Sens	nete ors
Si Active Capacitive Acceleron	e Silio neter	e Sensor -	Fabric n-Tube ə – Pr	: Tactile e Flow essure	e Senso Senso Senso	isor an or and ors – F	its ap Piezore	plications is the second se	on- Ine – Ca	ertial S pacitiv	Sens e -	nete ors Micr
Si Active Capacitive Acceleron Channel H	e Silic neter leat S	e Sensor - on – Wall i – Gyroscope	Fabric n-Tube e – Pr al MEN	: Tactile e Flow essure 1S – Vis	e Senso Senso Senso sual Dis	sor an or and ors – F splay–	its ap Piezore Optica	oplications esistive al Data	on- Ine – Ca Switch	ertial S pacitiv ing – I	Sens e - RF M	nete ors Micr /IEM
Si Active Capacitive Acceleron Channel H – MEMS Tweezers	e Silic neter leat S Variat	e Sensor - on – Wall i – Gyroscope inks – Optica ile Capacitor	Fabric n-Tube e – Pr al MEN rs – Mi	: Tactile e Flow essure 1S – Vis EMS Sv	e Senso Senso Senso sual Dis witches	sor an or and ors – F splay– s – Re	its ap Piezore Optica	oplications esistive al Data	on- Ine – Ca Switch	ertial S pacitiv ing – I	Sens e - RF M	nete ors Micr IEM Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV	e Silic neter leat S Variat	e Sensor - on – Wall i – Gyroscope inks – Optica le Capacitor MICRO AN	Fabric n-Tube e – Pr al MEN rs – Mi ID NAN	E Tactile E Flow essure IS – Vis EMS Sv NO AC	e Senso Senso Senso sual Dis witches	isor an or and ors – F splay– s – Re ORS	its ap Piezore Optica sonato	oplicatic esistive al Data ors - Pr	on- Ine – Ca Switch essure	ertial S pacitiv ing – I Sens	Sens e - RF M or -	nete ors Micr IEM Nan
Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem	e Silic neter Heat S Variat ent fo	e Sensor - on – Wall i – Gyroscope inks – Optica le Capacitor MICRO AN r Micro Actua	Fabric n-Tube e – Pr al MEN rs – Mi ID NAM ators -	E Tactile E Flow Essure IS – Vis EMS Sv NO AC Nano F	e Senso Senso sual Dis witches TUATO Position	isor an or and ors – F splay– s – Re DRS ners, N	its ap Piezore Optica sonato Micro M	oplicatio esistive al Data ors - Pr lechani	on- Ine – Ca Switch essure	ertial S pacitiv ing – I Sens sting	Sens e - RF M or -	nete ors Micr IEM Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific	e Silic neter Heat S Variat ent fo ation o	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actu	Fabric n-Tube e – Pr al MEW rs – MB rs – MB ID NAP ators - ator - E	E Tactile E Flow Essure IS – Vis EMS Sv NO AC Nano F Electros	e Senso Senso sual Dis witches TUATO Position	isor an or and ors – F isplay– s – Re ORS ners, N Distribut	its ap Piezore Optica sonato Micro M ted Act	oplicatio esistive al Data ors - Pr lechani uator- I	on- Ine – Ca Switch essure cal Te	ertial S pacitiv ing – I Sens sting A	Sens e - RF M or - Appa	nete ors Micr IEM Nan Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators	e Silic neter leat S Variat ent fo ation c	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MiCRO AN r Micro Actua of Micro Actua Worm, Zippe	Fabric n-Tube e – Pro al MEM rs – MB ID NAM ators - ator - E er and S	E Tactile Flow essure IS – Vis EMS Sv NO AC Nano F Electros Scratch	e Senso Senso sual Dis witches TUATO Position static D	sor an or and ors – F splay– s – Re ORS ners, M Distribut	its ap Piezore Optica sonato Micro M ted Act nal Act	oplicatio esistive al Data ors - Pr lechani uator- I uation-	on- Ine – Ca Switch essure cal Te Force I Bimorp	ertial S pacitiv ing – I Sens Sting / Distand	Sens e - RF M or - Appa ce va	nete ors Micr IEM Nan Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequence	e Silic neter leat S Variat ent fo ation c – Inch cy and	e Sensor - on – Wall i – Gyroscope inks – Optica le Capacitor MiCRO AN Micro Actur of Micro Actur Worm, Zippe Force Char	Fabric n-Tube e – Pre al MEN rs – Mi rs – Mi ID NAN ators - ator - E er and s acteris	E Tactile E Flow Essure IS – Vis EMS Sv NO AC Nano F Electros Scratch tics and	e Senso Senso sual Dis witches TUATO Position static D n Drive d Adva	sor an or and ors – F splay– s – Re ORS ners, M Distribut to Thern antages	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec	oplicatio esistive al Data ors - Pr lechan uator- I uation- tro thei	on- Ine – Ca Switch essure ical Te Force I Bimorp mal A	sting – l Sens sting / Distand Distand Distand	Sens e - RF M or - Appa ce va ckle l	nete ors Micr IEM Nan Aratu aratu Bear Iectr
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal	e Silic neter leat S Variat ent fo ation o – Inch cy anc Relay	e Sensor - on – Wall i – Gyroscope inks – Optica le Capacitor MiCRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha	Fabric n-Tube e – Pr al MEM rs – Mi rs – Mi not s ators - ator - E er and s acteris nical l	Tactile Flow essure IS – Vis EMS Sv EMS Sv NO AC Nano F Electros Scratch tics and Latch –	e Senso Senso sual Dis witches TUATC Position tatic D Drive d Adva - Force	sor an or and ors – F splay– s – Re DRS ners, M Distribut antages e vs D	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace	plication esistive al Data ors - Pr lechani uator- I uation- tro thei ement	on- Ine – Ca Switch essure cal Te Force I Bimorp mal A Curve	ertial S pacitiv ing – I Sens Sting / Distand Distand ctuato - Pie	Sens e - RF M or - Appa ce va ckle l r - E zoel	nete ors Micr IEM Nan aratu aratu Bear lectr
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation	e Silic neter leat S Variat ent fo ation o – Inch cy anc Relay Adva	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MiCRO AN r Micro Actua of Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi	Fabric n-Tube e – Pri al MEW rs – MB ators - ators - ator - E er and s acteris acteris mical 1 EMS S	E Tactile E Flow essure IS – Vis EMS Sv MO AC Nano F Electros Scratch tics and Latch – Switch	e Senso Senso sual Dis witches TUATO Position static D o Drive d Adva - Forco -Thin	sor an or and ors – F splay– s – Re ORS ners, M Distribut to Thern antages re vs E Film E	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Act	pplication esistive al Data ors - Pr lechanion uator- I uation- tro theo ement coustic	on- Ine – Ca Switch essure cal Te Force I Bimorp mal A Curve Reso	ertial S pacitiv ing – I Sens Sting A Distand oh-Bud ctuato - Pie nator	Sens e - RF M or - Appa ce va ckle l r - E zoel (FB/	nete ors Micr MEM Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic	e Silic neter leat S Variat ent fo ation o – Inch cy and Relay Adva Actua	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi tion - Extern	Fabric n-Tube e – Pro- al MEM rs – MB ators – ator – E er and s acteris inical 1 EMS S nal Ma	E Tactile Flow essure IS – Vis EMS SV NANO F Electros Scratch tics and Latch – Switch gnetic	e Senso Senso sual Dis witches TUATO Position tatic D batatic D o Drive d Adva - Forco -Thin Field <i>I</i>	sor and ors – F splay– s – Re ORS ners, N Distribut Thern antages e vs D Film E Actuato	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac	Plicatic esistive al Data ors - Pr lechani uator- I uation- tro then ement coustic ssues	on- Ine – Ca Switch essure cal Te Force I Bimorp mal Ar Curve Reso - Varia	ertial S pacitiv ing – I Sens Sting A Distand oh-Bud ctuato - Pie nator	Sens e - RF M or - Appa ce va ckle l r - E zoel (FB/	nete ors Micr MEM Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators	e Silic neter leat S Variat ent fo ation o – Inch cy and Relay Adva Actua	e Sensor - on – Wall i – Gyroscope inks – Optica le Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi tion - Exterr pe Memory A	Fabric n-Tube e – Pr al MEM rs – MI rs – MI ID NAN ators - ator - E er and s acteris natoral L EMS S nal Ma Actuato	E Tactile E Flow essure IS – Vis EMS Sv EMS Sv NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mid	e Senso Senso sual Dis witches TUATO Position tatic D Drive d Adva - Forco -Thin Field <i>P</i> cro Pu	sor and ors – F splay– s – Re ORS ners, N Distribut Thern antages e vs D Film E Actuato	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac	Plicatic esistive al Data ors - Pr lechani uator- I uation- tro then ement coustic ssues	on- Ine – Ca Switch essure cal Te Force I Bimorp mal Ar Curve Reso - Varia	ertial S pacitiv ing – I Sens Sting A Distand oh-Bud ctuato - Pie nator	Sens e - RF M or - Appa ce va ckle l r - E zoel (FB/	nete ors Micr MEM Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequence Thermal H Actuation Magnetic Actuators UNIT V	e Silic neter leat S Variat ent fo ation o – Inch cy anc Relay Adva Actua - Sha	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi tion - Extern pe Memory A	Fabric n-Tube e – Provent al MEW rs – MB in MEW ators – ator – E ator – MB ators – ator – E ator – MB ators – ator – E ator – E –	E Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic	e Senso Senso sual Dis witches TUATO Position static D of Drive d Adva - Forco - Thin Field A cro Pu	sor and or and ors – F splay– s – Re ORS ners, M Distribut Thern antages e vs E Film E Actuato imp and	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac ors & I d Micro	Polication Polication Pors - Pr Mechanion Uator- In Uation- tro theorem Coustic Ssues Do Fluidio	on- Ine – Ca Switch essure ical Te Force I Bimorp mal Ac Curve Reso - Varia cs.	sting - I Sens sting - I Sens sting / Distand ch-Bud ctuato - Pie nator able R	Sens e - RF M or - Appa ce va ckle l r - E zoel (FB, eluc	nete ors Micr IEM Nan Aratu arratu Beau lectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators Magnetic Actuators	e Silic neter leat S Variat ent fo ation o – Inch cy and Relay Adva Actua - Sha	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi tion - Extern pe Memory A MICRO AN vstems - Mic	Fabric n-Tube e – Pro- al MEM rs – MB itors – ator – Ber ators – ator – Ber ator – Ber ator – Ber acteris inical I EMS S hal Ma Actuato	Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic NO SYS gine Dri	e Sens Senso Sual Dis witches TUATO Position tatic D of Drive d Adva - Force - Thin Field <i>P</i> cro Pu STEM	sor and or and ors – F splay– s – Re ORS ners, M Distribut Thern antages is vs D Film E Actuato imp and y Elect	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Julk Ac ors & I d Micro	Al Data al Data brs - Pr lechani uator- I uation- tro their ement coustic ssues o Fluidio cally A	on- Ine – Ca Switch essure force I Bimorp mal Ar Curve Reso - Varia cs.	sting - I Sens Sting - I Sens Sting - Distand Sting - Distand - Distan	Sens e - RF M or - Appa ce va ckle I r - E zoel (FB, eluc	nete ors Micr IEM Nan Aratu Beau Jectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Actua - Sha idic Sp oots a	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actur Worm, Zippe Force Char with Mecha ntages - Mi tion - Exterr pe Memory / MICRO AN /stems - Mic nd Nano Rot	Fabric n-Tube e – Pre al MEM rs – MB ators – ator – B ator – B ato	Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic pro SYS	e Sens Senso Sual Dis witches TUATO Position tatic D o Drive d Adva - Forco -Thin Field A cro Pu STEM iven by	sor and or and ors – F splay– s – Re ORS ners, M Distribut . Thern antages re vs E Film E Actuato imp and y Elect , Night	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Julk Ac ors & I d Micro	Al Data al Data brs - Pr lechani uator- I uation- tro their ement coustic ssues o Fluidio cally A	on- Ine – Ca Switch essure force I Bimorp mal Ar Curve Reso - Varia cs.	sting - I Sens Sting - I Sens Sting - Distand Sting - Distand - Distan	Sens e - RF M or - Appa ce va ckle I r - E zoel (FB, eluc	nete ors Micr IEM Nan Aratu Beau Jectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Actua - Sha idic Sp oots a	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi tion - Extern pe Memory A MICRO AN ystems - Mic	Fabric n-Tube e – Pre al MEM rs – MB ators – ator – E ator – E ator – E acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris	Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic pro SYS	e Sens Senso Sual Dis witches TUATO Position tatic D o Drive d Adva - Forco -Thin Field A cro Pu STEM iven by	sor and or and ors – F splay– s – Re ORS ners, M Distribut . Thern antages re vs E Film E Actuato imp and y Elect , Night	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Julk Ac ors & I d Micro	Al Data al Data brs - Pr lechani uator- I uation- tro their ement coustic ssues o Fluidio cally A	on- Ine – Ca Switch essure force I Bimorp mal Ar Curve Reso - Varia cs.	sting - I Sens Sting - I Sens Sting - Distand Sting - Distand - Distan	Sens e - RF M or - Appa ce va ckle I r - E zoel (FB, eluc	nete ors Micr IEM Nan Aratu Beau Jectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Actua - Sha idic Sp oots a	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actur Worm, Zippe Force Char with Mecha ntages - Mi tion - Exterr pe Memory / MICRO AN /stems - Mic nd Nano Rot	Fabric n-Tube e – Pre al MEM rs – MB ators – ator – E ator – E ator – E acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris	Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic pro SYS	e Sens Senso Sual Dis witches TUATO Position tatic D o Drive d Adva - Forco -Thin Field A cro Pu STEM iven by	sor and or and ors – F splay– s – Re ORS ners, M Distribut . Thern antages re vs E Film E Actuato imp and y Elect , Night	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac ors & I d Micro trostatio Vision	Al Data al Data brs - Pr lechani uator- I uation- tro their ement coustic ssues o Fluidio cally A	on- Ine – Ca Switch essure ical Te Force I Bimorp mal Ac Curve Reso - Varia cs.	sting - I Sens Sting - I Sens Sting - Distand Sting - Distand - Distan	Sens e - RF M or - Appa ce va ckle l r - E zoel (FB, eluc	nete ors Micr IEM Nan Aratu Beau Jectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS <u>Tweezers</u> UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot and Applic	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Actua - Sha idic Sp oots an cation	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mit tion - Extern pe Memory / MICRO AN vstems - Mic nd Nano Rob of Micro and	Fabric n-Tube e – Pre al MEM rs – MB ators – ator – E ator – E ator – E acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris acteris	Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic pro SYS	e Sens Senso Sual Dis witches TUATO Position tatic D o Drive d Adva - Forco -Thin Field A cro Pu STEM iven by	sor and or and ors – F splay– s – Re ORS ners, M Distribut . Thern antages re vs E Film E Actuato imp and y Elect , Night	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac ors & I d Micro trostatio Vision	plicatic esistive al Data ors - Pr lechani uator- I uation- tro thei ement coustic ssues o Fluidio cally A Systen	on- Ine – Ca Switch essure ical Te Force I Bimorp mal Ac Curve Reso - Varia cs.	sting – l Sens sting – l Sens Sting / Distand ch-Bud ctuato - Pie nator able R	Sens e - RF M or - Appa ce va ckle l r - E zoel (FB, eluc	nete ors Micr IEM Nan Aratu Beau Jectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot and Applie COURSE Upon com	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Actua - Sha idic Sy oots an cation	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mi tion - Extern pe Memory A MICRO AN ystems - Mic of Micro and of Micro and COMES: n of this cou	Fabric n-Tube e – Pro- al MEM rs – MI in MAN ators - ator - E er and s acteris inical I EMS S nal Ma Actuato in NAN cro Eng bots – I d Nano	Tactile Flow essure S – Vis EMS SV NO ACT Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic NO SYS gine Dri Vicro In positio	e Sens Senso Sual Dis witches TUATO Position tatic D o Drive d Adva - Force -Thin Field A cro Pu STEM iven by nsects, in Syst	sor and or and ors – F splay– s – Re ORS ners, N Distribut antages e vs D Film E Actuato imp and y Elect , Night tems.	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac Displace Bulk Ac ors & I d Micro trostatic Vision	oplication esistive al Data ors - Pr lechani uator- I uation- tro then ement coustic ssues o Fluidion cally A System	on- Ine – Ca Switch essure ical Te Force I Bimorp mal Ac Curve Reso - Varia cs. ctuated n, BioN 45 PI	sting – I Sens Sting – I Sens Sting / Distand Distand Ctuato - Pie nator able R d Com / ERIOE	Sens e - RF M or - Appa ce va ckle I r - E zoel (FB, eluc (FB, eluc D D D D	nete ors Micr MEM Nan Nan Beau Jectr lectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot and Applie COURSE Upon com CO1 Ap	e Silic neter leat S Variat ent fo ation o – Inch cy anc Relay Adva Actua - Sha dic Sp oots at cation OUT(pletio ply th	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mic tion - Extern pe Memory / MICRO AN rstems - Mic of Micro and of Micro and of Micro and of Micro and of Micro and comes: n of this cou e principles	Fabric n-Tube e – Pr al MEM rs – MB rs – MB nators - ator - E er and s acteris nator - E er and s acteris acteris nator - E er and s acteris s acteris s acteris s a tor - E er and s acteris s a tor - E er and s a tor - E er and s a tor - E er and s a tor - E er and s a tor - E er and s and th	E Tactile E Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic NO SYS gine Dri Vicro In positio	e Senso Senso Sual Dis witches TUATC Position tatic D of Drive d Adva - Force -Thin Field 7 cro Pu STEM iven by nsects, on Syst	sor and or and ors – F splay– s – Re ORS ners, M Distribut antages e vs D Film E Actuato imp and y Elect , Night tems.	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Act ors & I d Micro trostatic Vision	oplication esistive al Data fors - Pr lechani uator- I uation- tro their ement coustic ssues o Fluidion cally A System OTAL and M	on- Ine – Ca Switch essure ical Te Force I Bimorp mal Ad Curve Reso - Varia cs. - Curtated n, BioN	sting – I Sens Sting – I Sens Sting / Distand oh-Bud ctuato - Pie nator able R d Com //EMS	Sens e - RF M or - Appa ce va ckle I r - E zoel (FB, eluc (FB, eluc D b D - Prii	nete ors Micr MEM Nan Nan Nan Lectr Jectr AR) tanc
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequend Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot and Applic COURSE Upon com CO1 Ap ca	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Adva Actua - Sha idic Sp oots ai cation opletio pletio	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mit tion - Extern pe Memory A MICRO AN vstems - Mic nd Nano Rob of Micro and com Sin Com of Micro and com Sin Com com Sin Com com com Sin Com com com Sin Com com com com Sin Com com com com com com com com com com c	Fabric n-Tube e – Pro- al MEW rs – MB ators – ator – E er and s acteris nator – E er and s and th ad deve	E Tactile Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic ors - Mic Dis O SYS gine Dri Micro In positio	e Sens Senso Sual Dis witches TUATO osition tatic D of Adva - Force -Thin Field A cro Pu STEM iven by nsects, n Syst	sor and or and ors – F splay– s – Re DRS ners, M Distribut . Thern antages ie vs D Film E Actuato imp and y Elect , Night tems.	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Julk Ac ors & I d Micro trostatio Vision	oplication esistive al Data fors - Pr lechani uator- I uation- tro then coustic ssues o Fluidion cally A System OTAL and M f Micro	on- Ine – Ca Switch essure cal Te Force I Bimorp mal Ar Curve Reso - Varia cs. ctuated n, BioM 45 PI EMS to and N	sting - I Sens Sting - I Sens Sting - Distand oh-Bud ctuato - Pie nator able R d Com IEMS	Sens e - RF M or - Appace va ckle I r - E zoel (FB, eluc (FB, eluc - Prin DS	nete ors Micr MEM Nan Aratu Beau Jectr Beau Jectr AR) tance Trive ncip
Si Active Capacitive Acceleron Channel H – MEMS Tweezers UNIT IV Requirem - Classific Actuators -Frequenc Thermal I Actuation Magnetic Actuators UNIT V Micro Flui Micro Rot and Applic COURSE Upon com CO1 Ap ca CO2 De	e Silic neter leat S Variat ent fo ation o - Inch cy and Relay Adva Actua - Sha idic Sp oots an cation oply th rry ou	e Sensor - on – Wall i – Gyroscope inks – Optica ole Capacitor MICRO AN r Micro Actua of Micro Actua Worm, Zippe Force Char with Mecha ntages - Mic tion - Extern pe Memory / MICRO AN rstems - Mic of Micro and of Micro and of Micro and of Micro and of Micro and comes: n of this cou e principles	Fabric n-Tube e – Pro- al MEM rs – Mi in MEM ators - ator - E er and s acteris acteris acteris acteris anical I EMS S anical I EMS S actuato in Mano in Nano in Nano	E Tactile E Flow essure IS – Vis EMS SV NO AC Nano F Electros Scratch tics and Latch – Switch gnetic ors - Mic bors - Mic gine Dri Vicro In positio	e Senso Senso Sual Dis witches TUATO Position tatic D of Drive d Adva - Force - Thin Field A cro Pu STEM iven by nsects, on Syst <u>of nan</u> nt work ally an	sor and or and ors – F splay– s – Re ORS ners, M Distribut antages re vs E Film E Actuato imp and y Elect motechr k in the nalyze	its ap Piezore Optica sonato Micro M ted Act nal Act s -Elec Displace Bulk Ac ors & I d Micro trostatic Vision Te nology e field o and e	oplication esistive al Data fors - Pr lechani uator- I uation- tro their coustic ssues o Fluidion cally A System OTAL and M f Micro evaluate	on- Ine – Ca Switch essure ical Te Force I Bimorp mal Ar Curve Reso - Varia cs. ctuated n, BioN 45 PI EMS te and N e the	ertial S pacitiv ing – I Sens Sting / Distand oh-Bud ctuato - Pie nator able R d Com / AEMS	Sens e - RF M or - Appace va ckle I r - E zoel (FB, eluc (FB, eluc D D D D D D D D D D D D D D D D D D D	nete ors Micr MEM Nan Aratu Beau Jectr Beau Jectr AR) tance Trive ncip

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

CO3	Generate and p				•			•
	communicate re		dings and	d innovat	ive solut	ions in th	e field (of Micro and
	Nano technology	у.						
CO4	Exhibit mastery	and deep	o underst	tanding (of key c	oncepts,	method	ls, and core
	elements in Micr	o and Nand	o technolo	ogy, shov	vcasing e	xpertise in	n desigr	n, fabrication,
	and characteriza				•	•	•	
CO5	Develop and op	otimize solu	utions for	r comple	x engine	ering pro	blems i	n Micro and
	Nano technolog	v, integrati	ng know	ledge fro	om multip	le discipl	ines an	d employing
	advanced tools			0				1 5 5
REFE	RENCES							
	ahalik N P, "MEM	S" McGrav	v Hill (Inc	lia) 2009)			
	arc Madou, "Fund					Press 20	11	
	phamed Gad-el-H							
	ami Franssila, Intr						ne I td	2010
	ai – Ran Hsu, "ME					•		
			ciosystei	ins Desig		anulacium	5, Tala	-wcGraw
	II, New Delhi, 200			liaan "I		Nonat	abbala	aion for
	aqar Ahmed a			KSON,	Emerging	g manole	ecnnolo	gies for
IVIč	anufacturing", Els	evier Inc., 2	2014					
								1
	COs			PO	S	1		
	000	1	2	3	4	5	6	
	1	1	1	2	1	1	1	
	2	1	1	2	b1 4	1	1]
	3	13	N.T.	2	4 (1))	2	1	
	4		1	2	1	2	1	
	5	3	1	2	1	1	2	

N DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR302	27	MODELLING AND FINITE ELEMENT ANALYSIS OF ELECTROMECHANICAL SYSTEMS	L	Т	Ρ	С
			3	0	0	3
COUR	SE OBJ	ECTIVES:				
1.	To com	prehend the fundamental principles of finite element an	alysis	S.		
2.		y appropriate selection and utilization of finite elements			physic	cal
		ineering problems across different applications.		Ŭ		
3.		yze and evaluate the effectiveness of shape functions a	and h	igher-	order	
		tion in finite element analysis.		U		
4.		onstrate proficiency in executing preprocessing tasks, i	ncluc	ling m	eshin	g,
	assignir	ng boundary conditions, and post-processing of engine	ering	proble	ems.	-
5.	To eval	uate and assess the capabilities of FEM software throu	gh re	al-tim	е	
	problem	-solving and case studies.	-			
UNIT I		INTRODUCTION				9
Basics	of FEM	 Initial Value and Boundary Value Problems – Weight 	ed Re	esidua	I Gale	erkin
and Ra	aleigh Ri [.]	z Methods – Review of Variational Calculus – Integrati	on by	Parts	s – Ba	isics
of Vari	iational F	ormulation.				
UNIT I		ONE DIMENSIONAL ANALYSIS				9
		 Discretization, Function – Derivation of Element Cl 				
Shape	Functio	n, Assembly and Imposition of Boundary Conditions	– So	lution	and	Post
	0	ne Dimensional Analysis in Solid Mechanics, Heat Tran	sfer, l	=luid [Dynan	nics,
		nd Electromagnetics.				
UNIT I		SHAPE FUNCTIONS AND HIGHER ORDER FORM				9
		atural Co-Ordinates – Shape Functions for One- ar				
		ree Noded Triangular and Four Noded Quadrilateral				
		parametric Elements – Jacobian Matrices and Transfo	rmati	ons –	Basic	s of
		al Axi Symmetric Analysis.				
UNIT I		ELECTROMECHANICAL SYSTEMS AND IMPLEM				9
		s – Energy Stored in Electric Field – Capacitance – Ma				
		nce – Force – Torque – Stress- Flow- Pre-Processing				
		nnectivity, Boundary Conditions, Input of Materia	al a	nd P	roces	sing
		- Solution and Post Processing				
UNIT		CASE STUDIES				9
		f biomechanical Modelling – Tissue Modelling - A				
		sors - Robot Arm- Overview of Application Packages	- AN	SYS,	ABAG	JUS
		Development of Model and Validation.				
TOTA			15 PE	RIOD	5	
		COMES KUGKESS INKUUGH KNOWLEDGE				
		on of this course, the students will be able to:				
CO1		e fundamental principles of finite element analysis and	their	applic	cation	IN
000	<u> </u>	ring problems.				
CO2		opropriate finite element elements and techniques to so	olve p	nysic	al and	
000		ring problems in various domains.				
CO3		and evaluate the performance of one-dimensional and	i two-	dimer	nsiona	al 🛛
001		ement elements in different engineering applications.		P		
CO4		ind implement appropriate pre-processing techniques,				
		n, boundary condition specification, and meshing strate	egies,	tor et	TICIEN	[
005		ement analysis.		-1		
	⊢valuat			ot pro	0000	na
CO5		e and interpret the results of finite element analysis usin ues to make informed engineering decisions.	ig po	st-pro	cessi	ng

Attested

VL DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Bathe, K. J. "Finite Element Procedures" Klaus-Jürgen Bathe, 2014.
- 2. Binns K.J, Lawrenson P.J, Trowbridge C.W, "The Analytical and Numerical Solution of Electric and Magnetic Fields", John Wiley & Sons, 1993.
- 3. Matthew. N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 2021.
- 4. Nathan Ida, Joao P.A.Bastos, "Electromagnetics and Calculation of Fields", Springer Verlage, 1997.
- 5. Nicola Biyanchi, "Electrical Machine Analysis using Finite Elements", Taylor and Francis Group, CRC Publishers, 2005.
- 6. Reddy, J.N, "An Introduction to the Finite Element Method", McGrawHill, 2019.
- 7. Salon S.J, "Finite Element Analysis of Electrical Machines" Kluwer Academic Publishers, 1995.

COs	POs							
COS	1	2	3	4	5	6		
1	3	1	1	1	1	1		
2	3	1	2	1	1	1		
3	3	1	2	1	1	1		
4	3	1	2	3	2	2		
5	3	1	3	3	3	3		
Avg	3	1	2	1.8	1.6	1.6		

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MN3051

CONCEPTS IN PRODUCT DEVELOPMENT

COURSE OBJECTIVES:

The main objective of this course is to prepare the students to:

- 1. Apply concurrent engineering principles in structuring work and deploying teams effectively in product development projects.
- 2. Analyse the role of customer involvement throughout the stages of the Product Life Cycle (PLC).
- 3. Utilize analysis tools such as Failure Mode and Effects Analysis (FMEA) to identify and mitigate potential risks in product design.
- 4. Assess the significance of intellectual property rights (IPR) in protecting new product innovations and conducting patent searches to ensure compliance.
- 5. Conduct quantitative and qualitative analysis to estimate future cash inflows and outflows in product development projects.

UNIT I PRODUCT DEVELOPMENT PROCESS & METHODOLOGIES 9

Integrated Product development process - Conceive – Specification, Concept design, Design - Detailed design, Validation and analysis (simulation), Tool design, realize – Plan manufacturing, Manufacture, Build/Assemble, Test (quality check), Service - Sell and Deliver, Use, Maintain and Support, Dispose. Bottom-up design, Top-down design, Front loading design workflow, Design in context, Modular design. Concurrent engineering - work structuring and team Deployment - Product and process systemization - problem, identification and solving methodologies. Product Reliability, Mortality Curve. Design for Manufacturing, Design for Assembly. Design for Six Sigma.

UNIT IIINTRODUCTION TO PRODUCT LIFE CYCLE ENVIRONMENT 9 Background, Overview, Need, Benefits, Concept of Product Life Cycle. Components/Elements of PLM, Emergence of PLM, Significance of PLM, Customer Involvement. Product Data and Product Workflow, Company's PLM vision, The PLM Strategy, Principles for PLM strategy, preparing for the PLM strategy, Developing a PLM strategy, Strategy identification and selection, Change Management for PLM, Transfer file, Database integration, System roles ERP, CAD, Configurators, EAI, PLM and Service Industry, PLM and E- Business and PLM Softwares, Tools.

UNIT III PRODUCT MODELLING AND ANALYSIS TOOLS

Product Modelling - Definition of concepts - Fundamental issues - Role of Process chains and product models -Types of product models - model standardization efforts-types of process chains - Industrial demands. Design for manufacturing - machining - casting and metal forming - optimum design - Design for assembly and disassembly - probabilistic design concepts - FMEA - QFD - Taguchi Method for design of experiments -Design for product life cycle. Estimation of Manufacturing costs, Reducing the component costs and assembly costs, Minimize system complexity.

UNIT IV PROJECT SELECTION, EVALUATION AND IPR

Collection of ideas and purpose of project - Selection criteria - screening ideas for new products (evaluation techniques). New Product Development Research - Patents - Patent search - Patent laws - International code for patents - Intellectual property rights (IPR). Design of proto type - testing - quality standards - marketing research - Understanding Customer Needs, Establishing Product Function - Product Teardown and Experimentation, Benchmarking and Establishing Engineering Specifications, Product Architecture.

UNIT V PRODUCT DEVELOPMENT ECONOMICS

Elements of Economics analysis - Quantitative and qualitative analysis-Economic Analysis process-Estimating magnitude and time of future cash inflows and out flows Sensitivity

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

9

9

9

analysis-Project trade-offs-Trade-offs rules-Limitation of quantitative analysis- Influence of qualitative factors on project success.

COURSE OUTCOMES

Upon successful completion if the course, students should be able to

- 1. Apply problem-solving strategies and methodologies to address challenges encountered during the product development process.
- 2. Evaluate the impact of customer involvement at different stages of the product life cycle and propose strategies for effective customer engagement.
- 3. Apply various product modelling techniques, such as CAD software and simulation tools, to create and optimize product designs.
- 4. Apply intellectual property rights (IPR) principles and conduct patent searches to protect and manage new product innovations.
- 5. Analyse and interpret quantitative and qualitative data to assess the economic viability of product development projects.

References

- 1. Grieves, Michael. Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- 2. Product Life Cycle Management by Antti Saaksvuori, Anselmi Immonen, Springer, 1st Edition (Nov.5, 2003)
- 3. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004. ISBN 1852338105
- 4. Karl T. Ulrich and Steven D. Eppinger "Product Design and Development"
- 5. John Stark "Product Lifecycle Management: Volume 1 21st Century Paradigm for Product Realisation"
- 6. Gerhard Pahl, Wolfgang Beitz, and Jörg Feldhusen "Engineering Design: A Systematic Approach"
- 7. Michael N. Kennedy "Product Development for the Lean Enterprise: Why Toyota's System is Four Times More Productive and How You Can Implement It"
- 8. Anil Mital, Anoop Desai, and Anand Subramanian "Product Development: A Structured Approach to Consumer Product Development, Design, and Manufacture"
- 9. Michael Pfeifer "Design for Manufacturability and Statistical Design: A Constructive Approach"
- 10. Richard Stim "Intellectual Property: Patents, Trademarks, and Copyrights"
- 11. Marc Annacchino "New Product Development: Successful Innovation in the Marketplace"
- 12. Niall M. Fraser "Engineering Economics: Financial Decision Making for Engineers"

COs	POs									
COS	1	2	3	4	5	6				
1	2	1	2	2	1	1				
2	2	1	2	2	1	1				
3	2	1	2	2	1	1				
4	2	1	2	2	1	1				
5	2	1	2	2	1	1				
Avg	2	1	2	2	1	1				

Ittested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR3028	CNC TECHNOLOGY	L	Т	Ρ	С
		3	0	0	3
COURSE OF					
	o interprete the classification of conventional machine tool C, CNC and DNC.	ols an	d diffe	rence	s of
2. To	understand the architecture of CNC and to identify the r	necha	tronic	eleme	ents
	d its functions in CNC machine reliable performance.	4	fa		
	 know the function various instrumentation sys easurement and interface 	lem	for p	baram	eter
4. To	o understand standards and programing techniques in Cl	NC m	achine).	
5. To	b learn the testing and maintance of various sub systems	of CN	NC.		
UNIT I	NC, CNC, AND DNC				9
and CNC Te Configuration	of Machine Tools – Types, Functions and Processes - echnologies Adaptive Control - Types, Application and of Adaptive Control and Function – Reasons for Proces h Adaptive Control - Example for Feedback and Adaptive MECHATRONIC ELEMENTS IN CNC MACHINE TO	d Ben ss Cha e Con	efits ange trol	- Gen	eral
-	s - Configuration of the CNC System – Interfacing – Mor			iagnos	-
- Machine Da for CNC, Ste CNC Machin for Rotary Mo	ta - Compensations for Machine Accuracies - PLC in CNC os in Programming and Case Studies - Machine Structur e - Guide Ways and Types - Mechanical Transmission otion to Linear Motion - Ball Screw and Types - Roller Scr Various Torque Transmission Elements - Requirements	C – PL e -Typ Eleme rew ar	Č Pro bes of ents - nd Typ	gramn Loads Eleme bes - R	ning s on ents Rack
	INSTRUMENTATION SYSTEM AND AUTO TOOLI	NG			9
Semi Qualifi Identification Indirect and I - Ball Lock M	 Rotary and Linear. Tooling - Requirement and Planning - ad Tools. Fixtures – Requirement - Unified and Mod - Touch Trigger Probe- Tool Coding - Tool Condition Direct Methods. Identification and Gauging of Work Piece. achanism and Contact Pressure Monitoring. Automatic T Benefits - Tool Magazine – Sensors in CNC. 	dular Monit Tool I	Fixtur toring Lockir	es - ⁻ - Vari ng Sys	Tool ious stem
UNIT IV	CNC PROGRAMMING	<u>.</u>			9
Manual CNC Offset in Milli and Macros. Fixed Cycles	andards - Machine Axes Identification - Primary, Secc Programming - Milling Programming Fundamentals ng -Fixed Cycles in Milling - Repetitive Programming - L Turning Programming Fundamentals - Compensation at in Turning. Computer Assisted Programming in AP utter Motion Definition - Postprocessor Statements - Gene ams	- Con Loops nd Off T - E	npens , Sub íset in Basic	ation Progra Turni Geom	and ams ng - netry
UNIT V	TESTING AND MAINTENANCE OF CNC MACHINE	ES			9
Running & M Maintenance Electronic Electronic	of Technical Specification and Functional Aspects, Ve lachine Tool and the Work Piece Accuracy - Installation of CNC Machines - Machine Elements – Hydraulic Eler ements – Maintenance Schedules	rificat n of C nents	NC M - Eleo	lachin ctrical	es - and
TOTAL			45 PE	RIOD	IS
CO1 State	tion of this course, the students will be able to: and compare the differences between Numerical Contro			puter	
CO2 Evalu	rical Control (CNC), and Direct Numerical Control (DNC) ate the architecture of CNC machines and assess the fu atronic elements for ensuring reliable performance.				
CO3 Apply	CNC programming techniques in machine tools to accurate machining operations.	rately	contro	ol and	
				Atte	sted

the DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

CO4	Implement testing and maintenance procedures for various subsystems of CNC
	machines to ensure their proper functioning.
CO5	Create diverse products by utilizing NC and CNC programming skills

CO5 Create diverse products by utilizing NC and CNC programming skills, demonstrating the ability to apply programming concepts to practical applications.

REFERENCES

- 1. Grahamt.Smith, "Advanced Machining: The Handbook of Cutting Technology", IFS Publications Ltd., 1989
- 2. Groover, M.P., "Automation, Production System and CIM", Prentice Hall of India Pvt. Ltd, 2019.
- 3. HMT Limited, "Mechatronics", Tata Mcgraw-Hill Publishing, 2002.
- 4. Jayakumar,V., and Mahendran,B., "Computer Aided Manufacturing", Lakshmi Publications, 2005.
- 5. Jonathan Lin,S.C., "Computer Numerical Control (From Programming to Networking)", Delmar Publishers Inc., 2000.
- 6. Radhakrishnan, P., "CNC Machine", New Central Book Agency, 2015.
- 7. Sehrawatt, M.S., and Narang, J.S., "CNC Machine", Dhanpat Rai and Co, 2002.
- 8. Stenerson and Curran, "Computer Numerical Control-Operation and Programming", PHI Learning Pvt. Ltd., 2008

COs	POs								
COS	1	2	3	4	5	6			
1	1		11112	1	2	2			
2	1	1	2	1	2	2			
3	1			Ś	2	2			
4	18	1	1 0	10	2	1			
5	1	1	- 11	1	2	2			
Avg	1	1	1.5	1	2	1.8			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR302	29	COMPUTER AIDED INSPECTION	L	Т	Ρ	С
			3	0	0	3
COUR	SE OBJ	ECTIVES:				
1.	To learn	the standards, instrumentation and errors in measurer	nent.			
2.		the measurement principle and methods used in b		and	advar	ced
	instrume	ents.				
3.	To learn	the applications of opto-electronics device for measure	emer	its.		
		rve the machine vision-based inspections.				
5.	To acqu	ire the measurement strategies in inspection using CM	M.			
UNIT I		FUNDAMENTALS AND CONCEPTS IN METROLOG				9
Standa	ards of M	easurement – Analog and Digital Measuring Instrume	nts -	Com	oarato	rs –
Limits,	Fits and	d Tolerances – Gauge Design –Surface Roughness	– Fo	orm E	rrors	and
Measu	rements.					
UNIT II		INSPECTION AND GENERAL MEASUREMENTS	S			9
Linear	Measurir	ng Instruments – Evolution – Types – Classification – Li	mit G	auges	s – Ga	uge
Design	i – Tern	ninology – Procedure – Concepts of Interchange A	bility	and	Selec	tive
		gular Measuring Instruments – Types – Bevel Protracto				
		Levels Sine Bar – Angle Alignment Telescope				
		nspection of Gears And Threads – Tool Makers' Mic				
		hine – Use of Laser Interferometer in Machine Tool I			– Use	s of
		e Inspection – Laser Micrometer – Laser Alignment Tel	lesco	pe.		
UNIT II	-	OPTO ELECTRONICS IN ENGINEERING INSPECT				9
		ctronics in Tool Wear Measurements – Microhole Measu			nd Sur	face
		pplications in In-Process Measurement and On-Line In	spec	tion.		
UNIT IN		MACHINE VISION				9
		of Image Processing – Steps Involved in Image Process	ing –	Mach	ine Vi	sion
		Manufacturing and Metrology.				
UNIT V		COORDINATE METROLOGY AND QUALITY CONT				9
		Coordinate Measuring Machines - Cycle Time Estimati				
		and Case Studies of CMM in Inspection - Use of C	omp	uters	in Qu	ality
Control	I – Contr	ol Charts – Reliability.				
TOTAL						
TOTAL			5 PE	RIOD	15	
		COMES:				
		n of this course, the students will be able to:		a ia al		£
		neasurement standards and protocols to ensure accurate	urate	and	error-	iree
	measure		0.0411.1			
		ooth basic and advanced metrology instruments eff	ectiv	ely ic	n pre	cise
	measure		otro		oviaci	for
UU 3	•	knowledge and understanding of non-contact opto-ele	SCILO	iics d	evices	SIO
004		ement applications.		au !'	h,	
		nachine vision-based inspection techniques to enha	ance	quali	iy coi	ITTO
	process		1		N/!	
CO5		d develop measurement strategies using Coordinate N	vieas	uring	wach	ines
	(CIMIM) f	or inspection and implement quality control measures.				

Attested

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Anil. K. Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India Pvt. Ltd., 2004.
- 2. Alan S. Morris, "The Essence of Measurement", Prentice Hall of India, 1996.
- 3. Beckwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2014.
- 4. Charles Reginald Shotbolt, "Metrology for Engineers", Cengage Learning EMEA, 1990.
- 5. Jain R.K., "Engineering Metrology", Khanna Publishers, 2013.
- 6. Robert G. Seippel, "Opto-Electronics for Technology and Engineering", Prentice Hall, 1989.
- 7. Robert J. Hocken, Paulo H. "Coordinate Measuring Machines and Systems", Second Edition, 2016.

<u> </u>	POs							
COs	1	2	3	4	5	6		
1	1	1	2	1	1	2		
2	1	1	1	2	1	1		
3	1	1	2	2	1	1		
4	1	1	1	2	1	2		
5	1 🖉	1	2	1	1	2		
Avg	1 0	1	1.6	1.6	1	1.6		

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COUR	MR3030 DESIGN OF EXPERIMENTS L T P							
COUR		3	0	0	3			
	SE OBJECTIVES:							
1.	To familiarize the concepts of Single Factor Experiment and	d Post he	oc tes	ts				
2.	To illustrate understanding of Factorial experiments	<u> </u>						
3.	To enable students with the extensions of Factorial expensions Surface Methods	eriments	and	Respo	onse			
4		mothod	for	norom	otor			
4.	To provide students with an understanding of Taguchi optimization	methoo	101	paran	leter			
5.	To provide students with understanding of Shainin DOE							
J. UNIT I					9			
	uction to Hypothesis testing – Experimentation – Need, Con	ventiona	tost	etrato				
	ology, basic principles of design – steps in experin							
	mized Design- effect of coding the observations- mode							
	tion of model parameters, residuals analysis- treatment							
	n's multiple range test, Newman-Keuel's test, Fisher's LSD te							
	contrasts-Randomized Block Design – Latin Square Desig							
	n – Applications							
UNITI					9			
	and Interaction effects - Two and three factor full factorial de	signs- F	ixed e	ffects	and			
	n effects model – Rule for sum of squares and Expected Me							
	o and three factors- Yate's Algorithm - Fitting regression mo							
Factor	ial Design- Introduction to MANOVA&ANCOVA.							
UNIT I								
	ng and Confounding in 2 ^ĸ Designs- blocking in replicated des							
	blocks- Complete and partial confounding - Confounding 2							
	evel Fractional Factorial Designs - Construction of one-half							
	Design - Introduction to Response Surface Methods- Desig	ns for fit	ing F	irst –c	order			
	-Central Composite Design – Box- Behnken Designs.							
		-			9			
	hi's Quality Loss Function- Philosophy- Design of Experir							
	, Data analysis from Orthogonal experiments - Response (
	te data analysis- Robust design- noise factors, Signal to Noi	se ratios	, inne	r/oute	r UA			
	- case studies. V SHAININ DESIGN OF EXPERIMENTS	_			9			
IINIT \					3			
		Chainin		mothe	do			
	o of Shainin DOE - Comparison between Taguchi DOE Vs							
Basics Proble	m Solving Algorithm - Problem Identification Tools- Shainin							
Basics Proble	m Solving Algorithm - Problem Identification Tools- Shainir - Case studies	Design	of E>	perim				
Basics Proble Tools	m Solving Algorithm - Problem Identification Tools- Shainir - Case studies TOTAI	Design	of E>	perim				
Basics Proble Tools	m Solving Algorithm - Problem Identification Tools- Shainir - Case studies TOTAI SE OUTCOMES:	Design	of E>	perim				
Basics Proble Tools COUR Upon o	m Solving Algorithm - Problem Identification Tools- Shainir - Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to:	n Design - 45 P E	of E>	perim DS				
Basics Proble Tools COUR Upon (CO1	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design	Design	of E>	perim DS	ents			
Basics Proble Tools COUR Upon of CO1 CO2	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process paramet optimization.	of Experier	of Ex ERIOI	perim DS :s ding	ents and			
Basics Proble Tools	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process paramet optimization. Apply Factorial Design principles for understanding of pro-	of Experier	of Ex ERIOI	perim DS :s ding	ents and			
Basics Proble Tools · COUR Upon (CO1 CO2 CO3	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process parametroptimization. Apply Factorial Design principles for understanding of pro- optimization	of Exper of Exper er unde cess par	of E> ERIOI	sperim DS ding ers an	and d its			
Basics Proble Tools · COUR Upon (CO1 CO2 CO3	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process paramet optimization. Apply Factorial Design principles for understanding of pro-	of Exper of Exper er unde cess par	of E> ERIOI	sperim DS ding ers an	ents and d its			
Basics Proble Tools COUR Upon o CO1 CO2 CO3 CO4	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAL SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process parametric optimization. Apply Factorial Design principles for understanding of pro- optimization Gain knowledge on Taguchi's approach to experiment	of Experience of Experience er unde cess par al desig	of E> ERIOI	sperim DS ding ers an	and d its			
Basics Proble Tools COUR Upon o CO1 CO2 CO3 CO3 CO4 CO5	m Solving Algorithm - Problem Identification Tools- Shainin - Case studies TOTAL SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process parametric optimization. Apply Factorial Design principles for understanding of pro- optimization Gain knowledge on Taguchi's approach to experimentric robustness.	of Experience of Experience er unde cess par al desig	of E> ERIOI	sperim DS ding ers an	and d its			
Basics Proble Tools · COUR Upon (CO1 CO2 CO3 CO3 CO4 CO5 TEXT	m Solving Algorithm - Problem Identification Tools- Shainin Case studies TOTAI SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process paramet optimization. Apply Factorial Design principles for understanding of pro- optimization Gain knowledge on Taguchi's approach to experiment robustness. Apply Response Surface Method and Shainin DOE to evalu	Design 45 PE <u>of Exper</u> er unde cess par al desig <u>uate qua</u>	of Ex ERIOI	sperim DS ding ers an attai	and d its			
Basics Proble Tools COUR Upon o CO1 CO2 CO3 CO3 CO4 CO5 TEXT 1. K	m Solving Algorithm - Problem Identification Tools- Shainin Case studies TOTAL SE OUTCOMES: completion of this course, the students will be able to: Understand the fundamental principles of Classical Design Apply single factor experiment for process parametric optimization. Apply Factorial Design principles for understanding of pro- optimization Gain knowledge on Taguchi's approach to experiment robustness. Apply Response Surface Method and Shainin DOE to evalue BOOKS	Design 45 PE <u>of Exper</u> er unde cess par al desig <u>uate qua</u>	of Ex ERIOI	sperim DS ding ers an attai	and d its			

V DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley & sons, 2012.
- 2. Krishnaiah K, Applied Statistical Quality Control and Improvement,1 st Edition,2014
- 3. Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., "Statistics for Experimenters: Design, Innovation, and Discovery", 2nd Edition, Wiley, 2005.
- 4. Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw-Hill, India, 2005

COs	POs								
005	1	2	3	4	5	6			
1	2	-	1	1	1	-			
2	2	1	2	1	1	-			
3	2	1	2	1	1	-			
4	2	1	2	1	1	-			
5	2	1	2	1	1	-			
Avg	2	1	1.8	1	1	-			

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

LTPC

COURSEOBJECTIVES:

- 1. To describe different operations management strategies for competitive advantage.
- 2. To know various techniques in forecasting the future Demand with accuracy.
- 3. To learn planning of production schedule and apply techniques like Aggregate plan, MRP, MRP II, DRP and ERP.
- 4. To learn how to determine the lot size and EOQ using the inventory systems. Also to learn how to classify the inventories for a better control.
- 5. To calculate the plant capacity and exercise control on production. Also to learn JIT implementation and control procedures.

UNIT I UNDERSTANDING OPERATIONS AND ITS DESIGN

Introduction to Operations Management, Manufacturing trends in India, Systems Perspective, Functions of Operations Management, Challenges and current priories for operations management; Operations Strategy- Corporate Strategy-Environmental Scanning -Developing Core Competencies -Developing Core Processes-Developing Global Strategies-Market Analysis-Market Segmentation-Competitive Priorities and Capabilities- Order Winners and Qualifiers-Identifying Gaps between Competitive Priorities and Capabilities - Addressing the Trends and Challenges in Operations Management –Global Competition -Comparative Cost Advantages- The Internet of Things- Need for Sustainable thinking for Operations Managers- Concerns and Barriers.

UNIT II DEMAND FORECASTING

Forecasting as a planning tool, need for forecast, forecasting time horizon, Design of forecasting system, Developing the forecasting Logic, Sources of data, Models for forecasting, Explorative Methods using Time Series - Moving averages, The exponential smoothing method, Extracting the components of time series, Estimating the trend using linear regression and Extracting the seasonal component; Causal Methods of forecasting, Accuracy of Forecasts and the Forecasting System.

UNIT III PRODUCTION PLANNING

Aggregate Production Planning and Master Production Scheduling; Resources Planning – Dependent demand attributes, the basic building blocks of a planning frame work, MRP logic, Using the MRP system, Capacity Requirements (CRP), Distribution Requirement Planning (DRP), and Resources Planning; Manufacturing Resources Planning (MRP II), Enterprise Resource Planning (ERP) and Resources Planning in Services.

UNIT IV INVENTORY PLANNING AND CONTROL

Inventory planning for independent Demand items, Types of inventory, Inventory Costs, Inventory Control for Deterministic Demand items, Handling Uncertainty in Demand, Inventory Control Systems, Selective Control of Inventory, Inventory Planning for Single - Period Demand and other issues in Inventory Planning and Control.

UNIT V CAPACITY ANALYSIS AND OPERATIONAL CONTROL

Defining capacity, Measures of capacity, The time horizon in capacity planning, The capacity planning framework, Alternatives for capacity augmentation, Decision tree for capacity planning; Operational control – Input - Output Control, Operational Control issues in mass production systems and Operations planning and control based on the theory of constraints; Elements of JIT Manufacturing and Production planning and Control in JIT.

TOTAL: 45 PERIODS

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

9

9

9

9

9

COURSE OUTCOMES:

The students will be able to

- **CO1.** Identify different operations management strategies for competitive advantage.
- **CO2.** Apply various techniques in forecasting the future Demand with accuracy.
- **CO3.** Plan the production schedule and apply techniques like Aggregate plan, MRP, MRP II, DRP and ERP.
- **CO4.** Determine the lot size and EOQ using the inventory systems. Also will be able to classify the inventories for a better control.
- **CO5.** Plan the capacity and exercise control on production. Also understand JIT implementation and control.

REFERENCES:

- **1.** Lee J. Krajewski, Manoj K. Malhotra, Larry P. Ritzman, "Operations Management: Strategy and Analysis", Pearson, 2018
- **2.** Mahadevan,B. Operations Management- Theory & Practice, Pearson Education, 2018.
- **3.** Panneerselvam, R. Production and operations management, PHI, 2012
- **4.** SeetharamaL.Narasimhan, Dennis W.McLeavey, Peter J.Billington, "Production Planning and Inventory Control", PHI, 2002

	PO's			PSO's			
CO's	1	2	3	1	2	3	
CO1	1	3	3	3	3	-	
CO2	1	3	3	3	3	-	
CO3	1	3	3	3	3	-	
CO4	1	3	3	3	3	-	
CO5	1	3	3	3	3	-	
Avg	1	3	3	3	3	-	

CO's - PO's & PSO's MAPPING

PROGRESS THROUGH KNOWLEDGE

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

MR30	31								
			3	0	0	3			
COUR		JECTIVES:							
1.	contro	idy the approaches and techniques to assess quality b I.	by sta	itistica	i pro	cess			
2.	, , , , , , , , , , , , , , , , , , , ,								
3.	To Im	part knowledge in reliability concepts and assess the var	ious d	config	uratio	ns			
4.	To Im	part knowledge in reliability monitoring methods							
5.	To An	alyze effectively various techniques to improve reliability	of the	e syste	em.				
UNIT -		QUALITY AND STATISTICAL PROCESS CONTROL				9			
capab desigr Short	ility –co n. Estab run SP0		nd U-	Chart	tolera	ance ng –			
UNIT -		ACCEPTANCE SAMPLING				9			
plans	– OC c	npling – types – probability of acceptance in single, doub urves – Producer 's risk and consumer 's risk. AQL, LTF Impling plans for AQL and LTPD – use of standard samp	PD, A	OQL,					
UNIT-		RELIABILITY CONCEPTS AND ASSESSMENT	01			9			
		finition – Reliability mathematics – Reliability function	ns –	Haza	rd ra	te –			
compo n syste	onent –	Reliability – Design life –A priori and posteriori probabi Mortality curve – Useful life-Different configurations – R omplex systems: RBD – Baye's approach – Cut and tie ems.	eduno	dancy	– k o	ut of			
UNIT -		RELIABILITY MONITORING	7			9			
		ethods: Failure terminated – Time terminated – Sequentia	al Tes	stina –	Relia	-			
		oring - Reliability allocation - Software reliability-Human				,			
UNIT -		RELIABILITY IMPROVEMENT				9			
•		lowntime – Repair time distribution – System repair ti leasures of maintainability – Inspection decisions –Syste				bility			
TOTA	L		45 PE	RIOD	S				
COUR	SE OU	TCOMES	÷						
		sful completion of the course, students should be able to							
CO1		quality principles, process variation, and control charts gement.	s for	effecti	ve qu	ality			
CO2		ss different sampling plans.							
CO3									
CO4									
CO5		ne effectively various techniques to improve reliability of	the s	ystem					
	RENCE				-				
E	ducatio	Mitra, "Fundamentals of Quality Control and Imp n, 5 th Edition, 2021.		-					
		E Ebling, "An Introduction to Reliability and Maintainabilit Hill, Third Edition, 2019.	y Eng	ineeri	ng", T	ata-			
		Smith, "Reliability, Maintainability and Risk: Practical Me rth, Tenth Edition, 2022.	thods	for E	ngine	ers",			
		"Engineering Maintainability – How to design for ance", PHI, 2008.	reliat	oility a	and e	easy			
5. P	atrick D	OT O'Connor, Andre Kleyner, "Practical Reliability Engi s Inc, 5 th edition ,2015.	neeri	ng", J	ohn-V	√iley			
6. R		ngton and Ronald N. Allan, "Reliability Evaluation of Engi	ineeri	ng Sy	stems	≥",			

1 DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

COs		POs					
COS	1	2	3	4	5	6	
1	2	2	1	2	2	1	
2	2	2	1	2	2	2	
3	2	2	1	1	2	2	
4	2	2	1	2	2	2	
5	2	2	1	2	2	3	
Avg	2	2	1	1.8	2	2	

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

QE3251

LEAN SIX SIGMA

COURSE OBJECTIVES

- 1. To understand Lean production principles, eliminate waste, and improve efficiency through case studies.
- 2. To learn steps for Value Stream Mapping, apply Lean metrics, and implement improvements in value streams.
- **3.** To explore Six Sigma's relationship with Lean Manufacturing, cultural changes, quality assessment, and cost implications.
- 4. To gain knowledge of various Six Sigma tools and techniques for problem-solving and project management.
- **5.** To evaluate Six Sigma quality economics, focus on continuous improvement using Lean principles, Kaizen, and 5S methodologies.

UNIT I LEAN MANUFACTURING

Evolution of Mass production, Traditional versus Mass production, Evolution of Toyota (Lean) Production System, Business Dynamics of Lean production, Principles of Lean production – Value, Value stream, Flow, Pull, Perfection- 3Ms – Muda, Mura, Muri, 7 Wastes in Manufacturing, Lean Tools to eliminate Muda - 5S, Standardised work, TPM, SMED, Jidoka – Poka Yoke, JIT, Heijunka, Kanban, One piece production, Case studies.

UNIT II VALUE STREAM MAPPING

Need for Value Stream mapping; Steps involved in Value stream mapping – Choose value stream – PQ and PR analysis, Current State map, Lean Metrics, Future State Map, Kaizen plans; Lean implementation - Cultural change, Hoshin planning; Lean in the Supply chain.

UNIT III SIX SIGMA

Six sigma - lean manufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ)

UNIT IV SIX SIGMA SCOPE OF TOOLS AND TECHNIQUES

Tools for definition – IPO diagram, SIPOC diagram, Flow diagram, CTQ Tree, Project Charter – Tools for measurement – Check sheets, Histograms, Run Charts, Scatter Diagrams, Cause and effect diagram, Pareto charts, Control charts, Flow process charts, Process Capability Measurement, Tools for analysis – Process Mapping, Regression analysis, RU/CS analysis, SWOT, PESTLE, Five Whys, interrelationship diagram, overall equipment effectiveness, TRIZ innovative problem solving – Tools for improvement – Affinity diagram, Normal group technique, SMED, 5S, mistake proofing, Value stream Mapping, forced field analysis – Tools for control – Gantt chart, Activity network diagram, Radar chart, PDCA cycle, Milestone tracker diagram, Earned value management.

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS

Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

TOTAL: 45 PERIODS

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

9

9

9

9

COURSE OUTCOMES:

The students will be able to

- **CO1.** Demonstrate understanding of Lean production principles, waste identification, and efficiency improvement.
- **CO2.** Apply Value Stream Mapping steps and Lean metrics to enhance organizational performance.
- **CO3.** Analyze the relationship between Six Sigma and Lean Manufacturing, evaluate cultural changes, quality levels, and cost implications.
- **CO4.** Acquire knowledge of Six Sigma tools and techniques for effective problem-solving and project management.
- Evaluate Six Sigma quality economics and demonstrate commitment to continuous
- **CO5.** improvement through Lean principles, Kaizen, 5S methodologies, and customer focus.

REFERENCES:

- Michael L.George, David Rownalds, Bill Kastle, What is Lean Six Sigma, McGraw Hill 2003
- 2. Thomas Pyzdek, The Six Sigma Handbook, McGraw-Hill, 2000
- 3. Fred Soleimannejed, Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004
- 4. Forrest W. Breyfogle, III, James M. Cupello, Becki Meadows, Managing Six Sigma:A Practical Guide to Understanding, Assessing, and Implementing the Strategy That Yields Bottom-Line Success, John Wiley & Sons, 2000
- 5. James P. Womack, Daniel T.Jones, Lean Thinking, Free Press Business, 2003

CO's	1.1.1.1	PO's		PSO's			
	1	2	3	E1 .	2	3	
1	-	3	3			2	
2	~	3	3			2	
3	2	3	3		-	2	
4	3	-	3	2	3	2	
5	2	RES-5 TI	3	2	3	2	
Avg	2.33	3	3	2	3	2	

CO's-PO's & PSO's MAPPING

1-low, 2-medium, 3-high, '-"- no correlation

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

IL3251

LTPC

COURSE OBJECTIVES:

- 1. To describe the role and drivers of and supply chain management in achieving competitiveness.
- 2. To explain about Supply Chain Network Design.
- 3. To illustrate about the issues related to inventory in Supply Chain.
- To appraise about transportation and sourcing in Supply Chain. 4.
- 5. To application of Information Technology and Emerging Concepts in Supply Chain.

UNIT I INTRODUCTION TO SUPPLY CHAIN MANAGEMENT

Definition and Objective of Supply Chain, The importance of Supply Chain Decisions, Decision Phases in a Supply Chain, Process View of Supply Chains. Competitive and Supply Chain Strategies, Achieving Strategic fit, Expanding Strategic Scope. Drivers of Supply Chain Performance, Frame work for Structuring Drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing, Infrastructure, International Logistics

UNIT II **DISTRIBUTION NETWORK DESIGN IN SUPPLY CHAIN**

The Role of Distribution in the Supply Chains, Factors influencing Distribution Network design, Design Options for a Distribution Network, Online sales and the Distribution network, Distribution Networks in practice. Factors influencing network design decisions, Framework for Network design decisions, The impact of uncertainty on network design, The impact of Globalization on Supply Chain networks, Risk Management in Global Supply Chains, Discounted cash flow analysis, **Evaluating Network Design Decisions**

UNIT III **INVENTORY IN SUPPLY CHAIN**

The Role of Cycle inventory in a Supply Chain, Economies of Scale to Exploit Fixed costs, Managing Multi-echelon Cycle Inventory. The Role of Safety Inventory in a Supply Chain, Determining appropriate level of Safety inventory, Impact of supply Uncertainty on Safety inventory, Impact of aggregation on safety inventory, impact of replenishment policies on safety inventory, Managing Safety Inventory in a Multi-echelon Supply Chain, The Role of IT in inventory management.

UNIT IV TRANSPORTATION AND SOURCING IN SUPPLY CHAIN

The role of transportation in a Supply chain, Modes of transportation and their performance characteristics, Transportation infrastructure and policies, Design options for a transportation network, Trade-offs in transportation design, Tailored transportation, The role of IT in transportation, Problems. Sourcing Decisions In A Supply Chain: The role of sourcing in a supply chain, in-house or outsource, Third-and Fourth-party logistics providers, Total cost of Ownership, Supplier selection, Auctions and Negotiations, Sharing Risk and Reward in the supply chain.

INFORMATION TECHNOLOGY IN SUPPLY CHAIN UNIT V

The role of IT in a supply chain, The supply chain IT framework, The supply chain macro processes, Lack of Supply Chain co-ordination and the Bullwhip effect, managerial levers to achieve coordination, continuous replenishment and vendor-managed inventories, collaborative planning, forecasting and replenishment (CPFR).

TOTAL:45 PERIODS

COURSE OUTCOMES:

The students will be able to

- Understand supply chain concepts, systemic and strategic role of SCM in global CO1. competitive environment.
- CO2. Evaluate alternative supply and distribution network structures using optimization models.
- CO3. Develop optimal inventory policies in the supply chain context.
- Attested CO4. Develop optimal sourcing and Transportation decisions in the supply chain.

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

9

9

9

9

9

CO5. Select appropriate information technology frameworks for managing supply chain processes.

REFERENCES:

- 1. Sunil Chopra, Peter Meindl and D.V. Kalra, "Supply Chain Management: Strategy, Planning, and Operation", Pearson Education, 2016.
- 2. Sarika Kulkarni & Ashok Sharma, Supply Chain Management Creating Linkages for Faster Business Turnaround, 1st Edition, TATA Mc Graw Hill, 2004.
- 3. David Simchi Levi, Philip Kaminsky, Edith Simchi Levi & Ravi Shankar, Designing & Managing the Supply Chain Concepts Strategies and Case Studies, McGraw-Hill higher education, 3rd Edition, 2008.
- 4. Jeremy F Shapiro, Modelling the Supply Chain, 2nd Edition, Cengage Learning, 2009.

CO's		PO's		PSO's			
	1	2	3	1	2	3	
1	1	2	1				
2	3	3	1	1	1	1	
3	3	3	1	1	1	1	
4	3	3	1	1	1	1	
5	3	3	11/2	1	3	1	
Avg.	2.6	3	NINER	1	1.5	1	

CO's-PO's & PSO's MAPPING

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025